Mostrar el registro sencillo del ítem

dc.contributor.authorLechuga Villena, Manuela María 
dc.contributor.authorGarcía López, Pedro Antonio 
dc.contributor.authorGarcía López, Ana Isabel 
dc.contributor.authorTapia Navarro, Cristina
dc.contributor.authorRíos Ruiz, Francisco 
dc.date.accessioned2025-11-25T11:14:11Z
dc.date.available2025-11-25T11:14:11Z
dc.date.issued2025-11-13
dc.identifier.citationManuela Lechuga, Pedro A. García, Ana I. García-López, Cristina Tapia-Navarro, and Francisco Ríos. Development of a Predictive Classification Model for Surfactant-Induced Skin Irritation. ACS Omega 2025 10 (46), 55868-55878 DOI: 10.1021/acsomega.5c07338es_ES
dc.identifier.urihttps://hdl.handle.net/10481/108308
dc.description.abstractThis study investigates the chemical properties of surfactants that significantly influence skin irritability using a predictive classification approach based on multiple linear regression and conditional inference trees. A data set comprising irritation values (Zein number, ZN) for 20 commercial surfactants and their binary mixtures was generated using an in vitro zein test. Key variables (hydrophilic–lipophilic balance (HLB), surfactant concentration, and ionic character) were evaluated to build robust statistical models. The multiple regression model explained 80% of the variability in skin irritation (adjusted R2 = 0.801), while the classification tree achieved an overall accuracy of 72%, with precision and recall values of 0.70 and 0.68, respectively. The results highlight the hierarchical influence of surfactant properties, with HLB emerging as the most significant predictor, followed by concentration and ionic character. Notably, mixtures of anionic and nonionic surfactants showed reduced irritation potential compared to individual anionic surfactants. These findings offer valuable insights for the formulation of safer and more effective surfactant-based productses_ES
dc.description.sponsorshipThis work has received the financial support provided by the University of Granada, with the research project “QSAR Modelling of skin irritation of surfactant-based formulations using in vitro methods”, funded by the Plan Propio UGR, PP2022.EI-05, and the Spanish Ministry of Science, Innovation and Universities (grant number PID2023-151375OB-I00). Funding for open access charge: Universidad de Granada / CBUA.es_ES
dc.language.isoenges_ES
dc.relation.ispartofseries10;55686-55878
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectskin irritationes_ES
dc.subjectToxicology es_ES
dc.subjectNon-ionic surfactantes_ES
dc.subjectAnionic surfactantes_ES
dc.subjectMixtures of surfacantses_ES
dc.subjectClassification methodses_ES
dc.subjectPredictive Modellinges_ES
dc.titleDevelopment of a Predictive Classification Model for Surfactant- Induced Skin Irritationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1021/acsomega.5c07338


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional