Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Materia
Fuzzy Semantic Networks Similarity Fuzzy Reasoning Social Network Analysis Knowledge Engineering Semantic Network
Fecha
2023-01Referencia bibliográfica
Castro, J.L., Francisco, M. (2023). Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_15
Patrocinador
Junta de Andalucia, projects P18-FR-5020 and A-HUM-250-UGR18; European Social Fund (ESF).; FPI 2017 predoctoral programme, from the Spanish Ministry of Economy and Competitiveness (MINECO), grant reference BES- 2017-081202.Resumen
In this paper we introduce a new Knowledge Representation model, the Similarity Fuzzy Semantic Networks. It is an extension of Fuzzy Semantic Networks that incorporates reasoning by similarity through a Similarity Inference Rule. Moreover, we show as it can be effectively applied to a trending and complex problem like the analysis of radical discourse in Twitter.