dc.contributor.author | Castro Peña, Juan Luis | |
dc.contributor.author | Francisco Aparicio, Manuel | |
dc.date.accessioned | 2024-12-16T17:05:49Z | |
dc.date.available | 2024-12-16T17:05:49Z | |
dc.date.issued | 2023-01 | |
dc.identifier.citation | Castro, J.L., Francisco, M. (2023). Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_15 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/98064 | |
dc.description.abstract | In this paper we introduce a new Knowledge Representation model, the Similarity Fuzzy Semantic Networks. It is an extension of Fuzzy Semantic Networks that incorporates reasoning by similarity through a Similarity Inference Rule. Moreover, we show as it can be effectively applied to a trending and complex problem like the analysis of radical discourse in Twitter. | es_ES |
dc.description.sponsorship | Junta de Andalucia, projects P18-FR-5020 and A-HUM-250-UGR18 | es_ES |
dc.description.sponsorship | European Social Fund (ESF). | es_ES |
dc.description.sponsorship | FPI 2017 predoctoral programme, from the Spanish Ministry of Economy and Competitiveness (MINECO), grant reference BES-
2017-081202. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.subject | Fuzzy Semantic Networks | es_ES |
dc.subject | Similarity Fuzzy Reasoning | es_ES |
dc.subject | Social Network Analysis | es_ES |
dc.subject | Knowledge Engineering | es_ES |
dc.subject | Semantic Network | es_ES |
dc.title | Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter | es_ES |
dc.type | book part | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/978-3-031-23492-7_15 | |
dc.type.hasVersion | AM | es_ES |