Induction and real-time ultrasonic monitoring of 3D cartilage-like tissue by a low shear stresses-based bioreactor
Metadatos
Mostrar el registro completo del ítemAutor
Martínez Moreno, Daniel; Callejas Zafra, Antonio Manuel; Jiménez González, Gema; Gálvez Martín, Patricia; Rus Carlborg, Guillermo; Marchal Corrales, Juan AntonioEditorial
AccScience Publishing
Materia
Scaffolds Infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) 1,4-Butanediol thermoplastic polyurethane (bTPUe)
Fecha
2024-07-12Referencia bibliográfica
Martínez Moreno, D. et. al. Int J Bioprint. 2024;10(4):3389. [https://doi.org/10.36922/ijb.3389]
Patrocinador
Ministerio de Economía, Industria y Competitividad (ERDF funds; project no.: RTC-2016-5451-1); Fundación Mutua Madrileña (FMMAP17196- 2019); Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (ERDF funds; project nos.: B-CTS-230-UGR18, PY18-2470, SOMM17-6109, and P18-FR-2465); Junta de Andalucía - Consejería de Universidad, Investigación e Innovación - Proyecto (P21_00182); Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Modeling Nature (MNat; project no.: QUAL21-11); Instituto de Salud Carlos III (ERDF funds; project nos.: DTS19/00145 and DTS21/00098); Ministry of Education (grant nos.: EQC2018-004508-P, DPI2017- 83859-R, and UNGR15-CE-3664); Junta de Andalucía (grant nos.: B-TEP-026-UGR18, IE2017-5537, P18- RT-1653)Resumen
Osteoarthritis is a significant socioeconomic illness that mainly affects the articular
cartilage, a tissue with a low capacity for self-healing, making it an ideal target
for regenerative medicine and tissue engineering. Current interventions to treat
cartilage injuries may not be completely effective. In this study, we have developed
a novel bioreactor that creates viscous shear stress by flow perfusion. This bioreactor
could induce ex vivo maturation of biomimetic 3D cartilage scaffolds, providing a
potential solution to this problem. Infrapatellar fat pad mesenchymal stem cells
(IPFP-MSCs) were used as a cellular source of the functionalized 3D scaffolds made
of 1,4-butanediol thermoplastic polyurethane (bTPUe) modified with pyrene
butyric acid (PBA). Our results indicate that our bioreactor induced chondrogenic
differentiation, as confirmed by DNA quantification, extracellular matrix
determination, and metabolic assay, without any conditioned medium. To control
the biomechanical stimulation on IPFP-MSCs, a low-intensity ultrasonic transmission
system has been developed and embedded in the bioreactor. Combined with a finite
element model (FEM), tissue growth and differentiation can be deconvoluted in realtime
from the recorded ultrasonic propagation and interaction across the graft. The
FEM reconstructs this complex interaction. This is the first time a low-shear stressbased
bioreactor has been reported to not only induce chondrogenic evolution but
also monitor it in real time.