Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Moreno, Daniel
dc.contributor.authorCallejas Zafra, Antonio Manuel 
dc.contributor.authorJiménez González, Gema 
dc.contributor.authorGálvez Martín, Patricia
dc.contributor.authorRus Carlborg, Guillermo 
dc.contributor.authorMarchal Corrales, Juan Antonio 
dc.date.accessioned2024-10-01T06:33:02Z
dc.date.available2024-10-01T06:33:02Z
dc.date.issued2024-07-12
dc.identifier.citationMartínez Moreno, D. et. al. Int J Bioprint. 2024;10(4):3389. [https://doi.org/10.36922/ijb.3389]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/95283
dc.description.abstractOsteoarthritis is a significant socioeconomic illness that mainly affects the articular cartilage, a tissue with a low capacity for self-healing, making it an ideal target for regenerative medicine and tissue engineering. Current interventions to treat cartilage injuries may not be completely effective. In this study, we have developed a novel bioreactor that creates viscous shear stress by flow perfusion. This bioreactor could induce ex vivo maturation of biomimetic 3D cartilage scaffolds, providing a potential solution to this problem. Infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) were used as a cellular source of the functionalized 3D scaffolds made of 1,4-butanediol thermoplastic polyurethane (bTPUe) modified with pyrene butyric acid (PBA). Our results indicate that our bioreactor induced chondrogenic differentiation, as confirmed by DNA quantification, extracellular matrix determination, and metabolic assay, without any conditioned medium. To control the biomechanical stimulation on IPFP-MSCs, a low-intensity ultrasonic transmission system has been developed and embedded in the bioreactor. Combined with a finite element model (FEM), tissue growth and differentiation can be deconvoluted in realtime from the recorded ultrasonic propagation and interaction across the graft. The FEM reconstructs this complex interaction. This is the first time a low-shear stressbased bioreactor has been reported to not only induce chondrogenic evolution but also monitor it in real time.es_ES
dc.description.sponsorshipMinisterio de Economía, Industria y Competitividad (ERDF funds; project no.: RTC-2016-5451-1)es_ES
dc.description.sponsorshipFundación Mutua Madrileña (FMMAP17196- 2019)es_ES
dc.description.sponsorshipConsejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (ERDF funds; project nos.: B-CTS-230-UGR18, PY18-2470, SOMM17-6109, and P18-FR-2465)es_ES
dc.description.sponsorshipJunta de Andalucía - Consejería de Universidad, Investigación e Innovación - Proyecto (P21_00182)es_ES
dc.description.sponsorshipConsejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Modeling Nature (MNat; project no.: QUAL21-11)es_ES
dc.description.sponsorshipInstituto de Salud Carlos III (ERDF funds; project nos.: DTS19/00145 and DTS21/00098)es_ES
dc.description.sponsorshipMinistry of Education (grant nos.: EQC2018-004508-P, DPI2017- 83859-R, and UNGR15-CE-3664)es_ES
dc.description.sponsorshipJunta de Andalucía (grant nos.: B-TEP-026-UGR18, IE2017-5537, P18- RT-1653)es_ES
dc.language.isoenges_ES
dc.publisherAccScience Publishinges_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectScaffoldses_ES
dc.subjectInfrapatellar fat pad mesenchymal stem cells (IPFP-MSCs)es_ES
dc.subject1,4-Butanediol thermoplastic polyurethane (bTPUe)es_ES
dc.titleInduction and real-time ultrasonic monitoring of 3D cartilage-like tissue by a low shear stresses-based bioreactores_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.36922/ijb.3389
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional