Afficher la notice abrégée

dc.contributor.authorPérez Gálvez, Antonio Raúl 
dc.contributor.authorEspejo Carpio, Francisco Javier 
dc.contributor.authorGuadix Escobar, Emilia María 
dc.contributor.authorGuadix Escobar, Antonio María 
dc.date.accessioned2024-02-07T10:07:27Z
dc.date.available2024-02-07T10:07:27Z
dc.date.issued2015
dc.identifier.citationRaúl Pérez-Gálvez. F.Javier Espejo-Carpio, Emilia M. Guadix, Antonio Guadix (2016). Journal of the Science of Food and Agriculture, 96: 207-214es_ES
dc.identifier.urihttps://hdl.handle.net/10481/88523
dc.description.abstractBACKGROUND: Amino acid-based fertilisers increase the bioavailability of nitrogen in plants and help withstand stress conditions. Additionally, porcine blood protein hydrolysates are able to supply iron, which is involved in chlorophyll synthesis and improves the availability of nutrients in soil. A high degree of hydrolysis is desirable when producing a protein hydrolysate intended for fertilisation, since it assures a high supply of free amino acids. Given the complexity of enzyme reactions, empirical approaches such as artificial neural networks (ANNs) are preferred for modelisation. RESULTS: Porcine blood meal was hydrolysed for 3 h with subtilisin. The time evolution of the degree of hydrolysis was successfully modelled by means of a feedforward ANN comprising 10 neurons in the hidden layer and trained by the Levenberg-Marquardt algorithm. The ANN model described adequately the influence of pH, temperature, enzyme concentration and reaction time upon the degree of hydrolysis, and was used to estimate the optimal operation conditions (pH 6.67, 56.9 °C, enzyme to substrate ratio of 10 g kg-1 and 3 h of reaction) leading to the maximum degree of hydrolysis (35.12%). CONCLUSIONS: ANN modelling was a useful tool to model enzymatic reactions and was successfully employed to optimise the degree of hydrolysis.es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectblood proteines_ES
dc.subjectfertilisationes_ES
dc.subjectenzymatic hydrolysises_ES
dc.subjectdegree of hydrolysises_ES
dc.subjectartificial neural networkses_ES
dc.subjectmodelisationes_ES
dc.titleArtificial neural networks to model the production of blood protein hydrolysates for plant fertilizationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1002/jsfa.7083
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-CompartirIgual 4.0 Internacional