Afficher la notice abrégée

dc.contributor.authorEspejo Carpio, Francisco Javier 
dc.contributor.authorPérez Gálvez, Antonio Raúl 
dc.contributor.authorGuadix Escobar, Antonio María 
dc.contributor.authorGuadix Escobar, Emilia María 
dc.date.accessioned2024-02-07T10:06:52Z
dc.date.available2024-02-07T10:06:52Z
dc.date.issued2018-08
dc.identifier.citationF.Javier Espejo-Carpio, Raúl Pérez-Gálvez, Antonio Guadix, Emilio M. Guadix. (2018). Journal of Dairy Research 85, 339-346.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/88520
dc.description.abstractThe enzymatic hydrolysis of milk proteins yield final products with improved properties and reduced allergenicity. The degree of hydrolysis (DH) influences both technological (e.g., solubility, water binding capacity) and biological (e.g., angiotensin-converting enzyme (ACE) inhibition, antioxidation) properties of the resulting hydrolysate. Phenomenological models are unable to reproduce the complexity of enzymatic reactions in dairy systems. However, empirical approaches offer high predictability and can be easily transposed to different substrates and enzymes. In this work, the DH of goat milk protein by subtilisin and trypsin was modelled by feedforward artificial neural networks (ANN). To this end, we produced a set of protein hydrolysates, employing various reaction temperatures and enzyme/substrate ratios, based on an experimental design. The time evolution of the DH was monitored and processed to generate the ANN models. Extensive hydrolysis is desirable because a high DH enhances some bioactivities in the final hydrolysate, such as antioxidant or antihypertensive. The optimization of both ANN models led to a maximal DH of 23·47% at 56·4 °C and enzyme–substrate ratio of 5% for subtilisin, while hydrolysis with trypsin reached a maximum of 21·3% at 35 °C and an enzyme–substrate ratio of 4%.es_ES
dc.description.sponsorshipConsejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (P07-TEP-02579)es_ES
dc.language.isoenges_ES
dc.publisherCambridge University Presses_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectenzymatic hydrolysises_ES
dc.subjectgoat milk hydrolysateses_ES
dc.subjectartificial neural networkses_ES
dc.subjectproteaseses_ES
dc.subjectoptimizationes_ES
dc.titleArtificial neuronal networks (ANN) to model the hydrolysis of goat milk protein by subtilisin and trypsines_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1017/S002202991800064X
dc.type.hasVersionAMes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución-NoComercial-CompartirIgual 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución-NoComercial-CompartirIgual 4.0 Internacional