Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Rodríguez, Lidia 
dc.contributor.authorMarcellán, Francisco
dc.contributor.authorPérez Fernández, Teresa Encarnación 
dc.contributor.authorPiñar González, Miguel Ángel 
dc.date.accessioned2023-10-04T07:00:30Z
dc.date.available2023-10-04T07:00:30Z
dc.date.issued2023-08
dc.identifier.citationL. Fernández, F. Marcellán, T.E. Pérez et al. Sobolev orthogonal polynomials and spectral methods in boundary value problems. Applied Numerical Mathematics. [https://doi.org/10.1016/j.apnum.2023.07.027]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84814
dc.descriptionThe work by FM has been supported by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación of Spain, grant PID2021-122154NB-I00, and the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors, grant EPUC3M23 in the context of the V PRICIT (Regional Program of Research and Technological Innovation). LF, TEP and MAP thanks Grant FQM-246-UGR20 funded by Consejería de Universidad, Investigación e Innovación and by European Union NextGenerationEU/PRTR; and Grant CEX2020-001105-M funded by MCIN/AEI/10.13039/501100011033. Funding for APC: Universidad Carlos III de Madrid (Agreement CRUE-Madroño 2023).es_ES
dc.description.abstractIn the variational formulation of a boundary value problem for the harmonic oscillator, Sobolev inner products appear in a natural way. First, we study the sequences of Sobolev orthogonal polynomials with respect to such an inner product. Second, their representations in terms of a sequence of Gegenbauer polynomials are deduced as well as an algorithm to generate them in a recursive way is stated. The outer relative asymptotics between the Sobolev orthogonal polynomials and classical Legendre polynomials is obtained. Next we analyze the solution of the boundary value problem in terms of a Fourier-Sobolev projector. Finally, we provide numerical tests concerning the reliability and accuracy of the Sobolev spectral method.es_ES
dc.description.sponsorshipFEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación of Spain PID2021-122154NB-I00es_ES
dc.description.sponsorshipMadrid Government EPUC3M23es_ES
dc.description.sponsorshipConsejería de Universidad, Investigación e Innovación FQM-246-UGR20es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033: CEX2020-001105-Mes_ES
dc.description.sponsorshipUniversidad Carlos III de Madrid CRUE-Madroño 2023es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectJacobi polynomialses_ES
dc.subjectSobolev orthogonal polynomialses_ES
dc.subjectConnection formulases_ES
dc.subjectAsymptotic propertieses_ES
dc.subjectSpectral methods and boundary value problemses_ES
dc.subjectFourier expansionses_ES
dc.titleSobolev orthogonal polynomials and spectral methods in boundary value problemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.apnum.2023.07.027
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional