Sobolev orthogonal polynomials and spectral methods in boundary value problems
Metadata
Show full item recordAuthor
Fernández Rodríguez, Lidia; Marcellán, Francisco; Pérez Fernández, Teresa Encarnación; Piñar González, Miguel ÁngelEditorial
Elsevier
Materia
Jacobi polynomials Sobolev orthogonal polynomials Connection formulas Asymptotic properties Spectral methods and boundary value problems Fourier expansions
Date
2023-08Referencia bibliográfica
L. Fernández, F. Marcellán, T.E. Pérez et al. Sobolev orthogonal polynomials and spectral methods in boundary value problems. Applied Numerical Mathematics. [https://doi.org/10.1016/j.apnum.2023.07.027]
Sponsorship
FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación of Spain PID2021-122154NB-I00; Madrid Government EPUC3M23; Consejería de Universidad, Investigación e Innovación FQM-246-UGR20; European Union NextGenerationEU/PRTR; MCIN/AEI/10.13039/501100011033: CEX2020-001105-M; Universidad Carlos III de Madrid CRUE-Madroño 2023Abstract
In the variational formulation of a boundary value problem for the harmonic oscillator, Sobolev inner products appear in a natural way. First, we study the sequences of Sobolev orthogonal polynomials with respect to such an inner product. Second, their representations in terms of a sequence of Gegenbauer polynomials are deduced as well as an algorithm to generate them in a recursive way is stated. The outer relative asymptotics between the Sobolev orthogonal polynomials and classical Legendre polynomials is obtained. Next we analyze the solution of the boundary value problem in terms of a Fourier-Sobolev projector. Finally, we provide numerical tests concerning the reliability and accuracy of the Sobolev spectral method.