
JID:APNUM AID:4649 /FLA [m3G; v1.342] P.1 (1-19)

Applied Numerical Mathematics ••• (••••) •••–•••
Contents lists available at ScienceDirect

Applied Numerical Mathematics

journal homepage: www.elsevier.com/locate/apnum

Sobolev orthogonal polynomials and spectral methods in 

boundary value problems

Lidia Fernández a, Francisco Marcellán b,∗, Teresa E. Pérez a, Miguel A. Piñar a

a Instituto de Matemáticas & Departamento de Matemática Aplicada, Universidad de Granada, 18071, Granada, Spain
b Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911, Leganés, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 January 2023
Received in revised form 4 July 2023
Accepted 29 July 2023
Available online xxxx

Keywords:
Jacobi polynomials
Sobolev orthogonal polynomials
Connection formulas
Asymptotic properties
Spectral methods and boundary value 
problems
Fourier expansions

In the variational formulation of a boundary value problem for the harmonic oscillator, 
Sobolev inner products appear in a natural way. First, we study the sequences of 
Sobolev orthogonal polynomials with respect to such an inner product. Second, their 
representations in terms of a sequence of Gegenbauer polynomials are deduced as well as 
an algorithm to generate them in a recursive way is stated. The outer relative asymptotics 
between the Sobolev orthogonal polynomials and classical Legendre polynomials is 
obtained. Next we analyze the solution of the boundary value problem in terms of a 
Fourier-Sobolev projector. Finally, we provide numerical tests concerning the reliability 
and accuracy of the Sobolev spectral method.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction and motivation

Orthogonal polynomials with respect to Sobolev inner products associated with a vector of positive measures 
(μ0, μ1, ..., μN ) supported on the real line have attracted the interest of many researchers. They are interesting from 
several points of view: smooth approximations by polynomials, Fourier expansions in terms of those polynomials as an 
alternative to the standard ones (see [7]), spectral methods for boundary value problems for differential equations, where 
the Sobolev orthogonal polynomials play an efficient role with respect to the classical ones (see [2], [3], [4]). Indeed, they 
have been recently studied in the framework of the so called diagonalized spectral methods for boundary value problems 
for some elliptic differential operators, see [1], [19].

Aside from the classical Gram-Schmidt method, a key problem is the generation of sequences of Sobolev orthogonal 
polynomials. Let us consider the Sobolev inner product

〈 f , g〉S =
N∑

k=0

∫
Ek

f (k)(x)g(k)(x)dμk(x),

for f , g functions on the appropriate weighted Sobolev space, where Ek is the support of the measure μk, k = 0, 1, ..., N , 
respectively. As it is well known, the multiplication by x is not a symmetric operator with respect to this inner product and, 
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as a consequence, the three term recurrence relation that standard orthogonal polynomials satisfy (see [5]) does not hold 
any more. This relation constitutes, from a computational point of view, a very useful tool to construct such sequences of 
standard orthogonal polynomials (see [6]).

Just a few examples of Sobolev orthogonal polynomials were known before the last decade of the 20th century, (see 
[11] for a survey on the state of the art). Nevertheless, the concept of coherent pairs of measures was introduced in the 
pioneering work ([8]). Furthermore, Sobolev orthogonal polynomials for vectors of measures associated with such measures 
have been extensively studied (see [13] as an updated survey).

A pair of measures (μ0, μ1) is said to be a coherent pair if the corresponding sequences of monic orthogonal polynomials 
{Pn(x; μk)}n�0, k = 0, 1, are related by a simple relation as

Pn(x;μ1) = 1

n + 1
[P ′

n+1(x;μ0) − ρn P ′
n(x;μ0)], n � 1.

In such a case, if {Sn(x; μ0, μ1))}n�0 denotes the sequence of monic Sobolev orthogonal polynomials with respect to the 
vector of measures (μ0, μ1), then they can be generated by the following recursive relations in terms of the standard 
orthogonal polynomials

Sn+1(x;μ0,μ1) − γn Sn(x;μ0,μ1) = Pn+1(x;μ0) − ρn Pn(x;μ0),

S ′
n+1(x;μ0,μ1) − γn S ′

n(x;μ0,μ1) = (n + 1)Pn(x;μ1).
(1.1)

Coherent pairs of measures are described in [17]. Essentially, one of the measures must be a classical one (Jacobi, 
Laguerre) and the other one is a rational perturbation of it. The above connection formulas proved to be very useful in 
the study of analytic properties of the Sobolev orthogonal polynomials associated with a coherent pair of measures. As an 
illustrative sample, outer relative asymptotics have been deeply analyzed in the literature (see [14], [15], [16] as well as the 
recent survey [13], where an updated list of references concerning this topic is presented).

A natural extension of coherent pairs has been presented in [17] where μ0 and μ1 are symmetric measures supported 
on symmetric intervals of the real line. In such a case

Pn(μ1; x) = 1

n + 1

[
P ′

n+1(μ0; x) − ρn−1 P ′
n−1(μ0; x)

]
, ρn−1 �= 0, n ≥ 2.

The symmetrically coherent pairs of measures are described in [17]. Essentially, one of the measures must be a classical 
one (Hermite, Gegenbauer) and the other one is a rational perturbation of it. Other extensions of coherent pairs of measures 
have been studied in the literature, either involving more terms in the right hand side of (1.1) (see [10]) or higher order 
derivatives in both sides ([9]).

Next, we will show how Sobolev orthogonal polynomials appear as a useful tool in the framework of spectral methods 
for boundary value problems.

The solution of the boundary value problem (BVP, in short) for the ordinary differential equation associated with the 
harmonic oscillator, a stationary Schrödinger equation with potential V (x) = x2,

−u′′ + λ x2 u = f (x),

u(−1) = u(1) = 0,
(1.2)

where λ > 0, can be studied from a variational perspective taking into account the Sobolev inner product

〈u, v〉λ = λ

1∫
−1

u(x) v(x) x2 dx +
1∫

−1

u′(x) v ′(x)dx, (1.3)

associated with the variational formulation of (1.2).
Let P denote the linear space of real polynomials. The test functions for (1.2) should be chosen in the linear space 

(x2 − 1) P . Then we have to deal with an orthogonal basis in (x2 − 1) P of polynomials vanishing at the ends of the interval 
[−1, 1] associated with the above Sobolev inner product.

The structure of the manuscript is as follows. In Section 1 we have presented a motivation and basic background about 
sequences of orthogonal polynomials with respect to weighted Sobolev inner products. Next, in such a section we will 
provide some basic results about Jacobi orthogonal polynomials which will useful in the sequel. In Section 2, Sobolev 
orthogonal polynomials with respect to the pair of measures (x2dx, dx) supported on the interval [−1, 1] are introduced. 
The connection formulas with generalized Jacobi polynomials P (−1,−1)

n (x) are stated and, as a consequence, estimates for 
the Sobolev norms as well as outer relative asymptotics with respect to the Legendre polynomials are deduced. In Section 3, 
a family of polynomials orthogonal with respect to the above Sobolev inner product satisfying the boundary conditions at 
±1 is studied. Notice that such polynomials constitute a basis of the linear space (x2 − 1) P . From them, we generate a 
new Sobolev inner product with an orthogonal polynomial basis. The connection formula between such Sobolev orthogonal 
polynomials and Jacobi polynomials P (1,1)

n (x) is stated. As a consequence, in Section 4, the Sobolev Fourier coefficients of a 
function satisfying the BVP conditions (1.2) are deduced in a recursive way. Finally, some numerical experiments are shown.
2
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1.1. Jacobi orthogonal polynomials

Along this paper, we deal with the sequence of monic polynomials {P (α,β)
n }n�0, α, β > −1, orthogonal with respect to 

the classical Jacobi inner product defined by the beta distribution, i.e.,

〈 f , g〉α,β =
1∫

−1

f (t)g(t)w(α,β)(t)dt, (1.4)

where w(α,β)(t) = (1 − t)α(1 + t)β . Expressions for monic Jacobi polynomials are obtained from the corresponding formulas 
in [18].

The square of the norms ‖P (α,β)
n ‖2 = 〈P (α,β)

n , P (α,β)
n 〉α,β is given by

‖P (α,β)
n ‖2 = 22n+α+β+1n!�(n + α + 1)�(n + β + 1)�(n + α + β + 1)

�(2n + α + β + 2)�(2n + α + β + 1)
, (1.5)

(see [18, (4.3.3)]).
The explicit representation of monic orthogonal Jacobi polynomials ([18, (4.3.2)]) can be given in terms of Pochhammer 

symbols as

P (α,β)
n (x) = n!

(n + α + β + 1)n

×
n∑

m=0

(α + m + 1)n−m

(n − m)!
(β + n − m + 1)m

m! (x + 1)n−m(x − 1)m,

(1.6)

where for a ∈R, (a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), n � 1, denotes the usual Pochhammer symbol.
By using the explicit (hypergeometric) expression (1.6), we can define monic Jacobi polynomials for α, β ∈R such that

(n + α + β + 1)n �= 0, n ∈N.

Monic Jacobi orthogonal polynomials {P (α,β)
n }n�0 satisfy the three-term recurrence relation ([18])

x P (α,β)
n (x) = P (α,β)

n+1 (x) + λ
(α,β)
n P (α,β)

n (x) + γ
(α,β)

n P (α,β)
n−1 (x), n � 0,

P (α,β)
−1 (x) = 0, P (α,β)

0 (x) = 1,
(1.7)

where

λ
(α,β)
n = β2 − α2

(2n + α + β + 2)(2n + α + β)
, n � 0,

γ
(α,β)

n = 4 n (n + α) (n + β) (n + α + β)

(2n + α + β + 1)(2n + α + β)2(2n + α + β − 1)
, n � 1.

In the symmetric case, that is, when α = β ,

λ
(α,α)
n = 0, n � 0, γ

(α,α)
n = n (n + 2α)

(2n + 2α + 1)(2n + 2α − 1)
, n � 1,

and the three term recurrence relation takes the form

x P (α,α)
n (x) = P (α,α)

n+1 (x) + n (n + 2α)

(2n + 2α + 1)(2n + 2α − 1)
P (α,α)

n−1 (x). (1.8)

As it is well known, for α, β > −1, Jacobi polynomials are orthogonal with respect to the inner product (1.4). Following 
Favard’s theorem, for α, β ∈ R such that −α, −β, −α − β /∈ N , Jacobi polynomials are orthogonal with respect to a quasi-
definite moment functional ([5]).

Singular cases appear when α = −l or β = −l, l ∈N ([18, p. 64]). If α = −l, then x = 1 is a zero of order l of P (−l,β)
n (x). 

Similarly, if β = −l, then x = −1 is a zero of order l of P (α,−l)
n (x).

Monic Jacobi polynomials satisfy the derivation formula

d
P (α,β)

n (x) = n P (α+1,β+1)
n−1 (x), n � 1. (1.9)
dx

3
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Moreover, Jacobi polynomials satisfy two structure relations

(x2 − 1)
d

dx
P (α,β)

n (x) = n
[

P (α,β)
n+1 (x) + a(α,β)

n P (α,β)
n (x) + b(α,β)

n P (α,β)
n−1 (x)

]
, (1.10)

P (α,β)
n (x) = P (α+1,β+1)

n (x) + c(α,β)
n P (α+1,β+1)

n−1 (x) + d(α,β)
n P (α+1,β+1)

n−2 (x), (1.11)

for n � 1, where

a(α,β)
n = 2(β − α)(n + α + β + 1)

(2n + α + β + 2)(2n + α + β)
,

b(α,β)
n = − 4(n + α)(n + β)(n + α + β + 1)(n + α + β)

(2n + α + β + 1)(2n + α + β)2(2n + α + β − 1)
,

c(α,β)
n = 2n(β − α)

(2n + α + β + 2)(2n + α + β)
,

d(α,β)
n = − 4n(n − 1)(n + α)(n + β)

(2n + α + β + 1)(2n + α + β)2(2n + α + β − 1)
.

1.2. Connection formulas for Legendre polynomials

We work with the generalized monic Jacobi polynomials {P (−1,−1)
n }n�2 defined as the natural extension of monic Jacobi 

polynomials when α, β → −1.
From (1.6), we can define the polynomials for n � 2, and we can complete the basis by defining P (−1,−1)

0 (x) =
1, P (−1,−1)

1 (x) = x.
This monic singular Jacobi polynomials also satisfy the three-term recurrence relation (1.8) in the form

P (−1,−1)
0 (x) = 1, P (−1,−1)

1 (x) = x,

P (−1,−1)
n (x) = x P (−1,−1)

n−1 (x) − (n − 1) (n − 3)

(2n − 3)(2n − 5)
P (−1,−1)

n−2 (x), n � 2.

It well known (see [18]) that

P (−1,−1)
n (x) = (x2 − 1) P (1,1)

n−2 (x), n � 2. (1.12)

On the one hand, using (1.9), we get

d

dx
P (−1,−1)

n (x) = n P (0,0)
n−1 (x) = n Pn−1(x), n � 2, (1.13)

where {Pn}n�0 denotes the monic Legendre polynomials, orthogonal with respect to the inner product (1.4) for α = β = 0. 
In addition, we will denote by

‖Pn‖2 = 〈Pn, Pn〉0,0

the norm of the monic Legendre polynomials. By (1.5), we can see that, for k � 0,

lim
n→+∞

‖Pn‖2

‖Pn−k‖2 =
(

1

4

)k

. (1.14)

In addition, both families of polynomials are related by (1.11)

P (−1,−1)
n (x) = Pn(x) + dn Pn−2(x), n � 2, (1.15)

where

dn = d(−1,−1)
n = − n (n − 1)

(2n − 1)(2n − 3)
= −1

4
− 1

4n
− 5

16n2 + O (n−3). (1.16)

The three-term recurrence relation for Legendre polynomials reads as

x Pn(x) = Pn+1(x) + γn Pn−1(x), n � 0, (1.17)

where P−1(x) = 0, P0(x) = 1, γn = γ
(0,0)

n , with

γn = n2

2
= 1 + 1

(
1 − 1

)
= 1 + 1

2
+ 1

4
+ O (n−6). (1.18)
4n − 1 4 8 2n − 1 2n + 1 4 16n 64n

4
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Iterating (1.17) we get

x2 Pn(x) = Pn+2(x) + (γn+1 + γn) Pn(x) + γn γn−1 Pn−2(x), n � 1. (1.19)

2. Sobolev orthogonal polynomials from the variational formulation

In this section we study the sequence of orthogonal polynomials with respect to the Sobolev inner product

〈u, v〉λ = λ

1∫
−1

u(x) v(x) x2 dx +
1∫

−1

u′(x) v ′(x)dx, (2.1)

for λ > 0.
Let us denote by {φn}n�0 the sequence of monic orthogonal polynomials with respect to this Sobolev inner product. It is 

easy to check that

φ0(x) = 1, φ1(x) = x, φ2(x) = x2 − 3

5
, φ3(x) = x3 − 5(λ + 7)

7(λ + 5)
x. (2.2)

The connection between these polynomials and P (−1,−1)
n is given in the next Proposition.

Proposition 2.1. For n � 2,

P (−1,−1)
n (x) = φn(x) + an φn−2(x) + bn φn−4(x), (2.3)

where

an = λ[γnγn−1 + dn(γn−1 + γn−2 + dn−2 − an−2)] ‖Pn−2‖2

‖φn−2‖2
λ

, n � 2, (2.4)

bn = λdn
‖Pn−2‖2

‖φn−4‖2
λ

�= 0, n � 4, b2 = b3 = 0, (2.5)

and dn, γn are given in (1.16) and (1.18), respectively.
Moreover,

Pn(x) + dn Pn−2(x) = φn(x) + anφn−2(x) + bnφn−4(x). (2.6)

Proof. Expanding

P (−1,−1)
n (x) = φn(x) +

n−1∑
i=0

αn
i φi(x),

and applying orthogonality,

αn
i = 〈P (−1,−1)

n , φi〉λ
〈φi, φi〉λ ,

we get αn
i = 0, for 0 � i � n − 5 and, using the symmetry, (2.3) holds. Using (1.13) and (1.15), we observe that

λ

1∫
−1

(Pn(x) + dn Pn−2(x))φn−4(x) x2 dx = λdn ‖Pn−2‖2, n � 4,

so (2.5) holds. To compute an , we study the integral

I1 =
1∫

−1

(Pn(x) + dn Pn−2(x))φn−2(x)x2dx

=‖Pn‖2 + dn

1∫
−1

x2 Pn−2(x)φn−2(x)dx.
5
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Using (1.19) we obtain

I2 =
1∫

−1

x2 Pn−2(x)φn−2(x)dx

=
1∫

−1

(
Pn(x) + (γn−1 + γn−2)Pn−2(x) + γn−2 γn−3 Pn−4(x)

)
φn−2(x)dx

= (γn−1 + γn−2)‖Pn−2‖2 + γn−2 γn−3

1∫
−1

Pn−4(x)φn−2(x)dx.

Now, using (2.3) and (1.15) we get

φn−2(x) = P (−1,−1)
n−2 (x) − an−2φn−4(x) − bn−2φn−6(x)

= Pn−2(x) + dn−2 Pn−4(x) − an−2φn−4(x) − bn−2φn−6(x),

then

1∫
−1

Pn−4(x)φn−2(x)dx = (dn−2 − an−2)‖Pn−4‖2,

and, as a consequence,

I1 = ‖Pn‖2 + dn[(γn−1 + γn−2)‖Pn−2‖2 + γn−2 γn−3(dn−2 − an−2)‖Pn−4‖2].
By (1.19), γn−2γn−3‖Pn−4‖2 = ‖Pn−2‖2, so

I1 = ‖Pn‖2 + dn
(
γn−1 + γn−2 + dn−2 − an−2

)‖Pn−2‖2,

and again using that ‖Pn‖2 = γnγn−1‖Pn−2‖2 the result follows.
Finally, we get (2.6) from (1.15) and (2.3). �

Remark 2.2. Notice that the initial conditions read as a2 = − 2
5 , a3 = − 2λ

7(λ+5)
.

Proposition 2.3. The norms of the Sobolev orthogonal polynomials, for n � 4, satisfy

‖φn‖2
λ = λ(γn + γn+1 + 2dn − an)‖Pn‖2

+ λdn
(
(γn−1 + γn−2)(dn − an) − an(dn−2 − an−2 − bn)

)‖Pn−2‖2

+ n2‖Pn−1‖2.

In addition,

‖φ0‖2
λ = 2λ

3
, ‖φ1‖2

λ = 2 + 2λ

5
, ‖φ2‖2

λ = 8

3
+ 8λ

175
,

‖φ3‖2
λ = 8

45

5λ2 + 511λ + 2205

49λ + 245
.

Proof. The norms of φ0, φ1, φ2 and φ3 are obtained directly from their explicit expressions (2.2). For n � 3, using (1.15) and 
(1.13),

‖φn‖2
λ = 〈φn, P (−1,−1)

n 〉λ

= λ

1∫
−1

φn(x)(Pn(x) + dn Pn−2(x))x2dx +
1∫

−1

φ′
n(x)nPn−1(x)dx

= λ

1∫
φn(x)(x2 Pn(x) + dnx2 Pn−2(x))dx + n2‖Pn−1‖2.
−1

6
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Applying (1.19),

‖φn‖2
λ = λ

1∫
−1

φn(x)
(

Pn+2(x) + (γn+1 + γn)Pn(x) + γnγn−1 Pn−2(x)

+ dn(Pn(x) + (γn−1 + γn−2)Pn−2(x) + γn−2γn−3 Pn−4(x)
)

dx

+ n2‖Pn−1‖2,

and using the orthogonality of the Legendre polynomials, we get

‖φn‖2
λ = λ(γn+1 + γn + dn)‖Pn‖2

+ λ
(
γnγn−1 + dn(γn−1 + γn−2)

) 1∫
−1

φn(x)Pn−2(x)dx

+ λdnγn−2γn−3

1∫
−1

φn(x)Pn−4(x)dx + n2‖Pn−1‖2.

But, from Proposition 2.1 and (1.15)

1∫
−1

φn(x)Pn−2(x)dx

=
1∫

−1

(
P (−1,−1)

n (x) − anφn−2(x) − bnφn−4(x)
)

Pn−2(x)dx

=
1∫

−1

(
Pn(x) + dn Pn−2(x) − anφn−2(x) − bnφn−4(x)

)
Pn−2(x)dx

= (dn − an)‖Pn−2‖2.

Using the same argument as above and the previous integral for n − 2, we get, for n � 4,

1∫
−1

φn(x)Pn−4(x)dx

=
1∫

−1

(
Pn(x) + dn Pn−2(x) − anφn−2(x) − bnφn−4(x)

)
Pn−4(x)dx

= −an

1∫
−1

φn−2(x)Pn−4(x)dx − bn‖Pn−4‖2

= −an(dn−2 − an−2)‖Pn−4‖2 − bn‖Pn−4‖2.

Then

‖φn‖2
λ = λ(γn+1 + γn + dn)‖Pn‖2

+ λ
(
γnγn−1 + dn(γn−1 + γn−2)

)
(dn − an)‖Pn−2‖2

− λdnγn−2γn−3

(
an(dn−2 − an−2) + bn

)
‖Pn−4‖2 + n2‖Pn−1‖2.

Taking into account that γnγn−1‖Pn−2‖2 = ‖Pn‖2 we obtain
7
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Fig. 1. Relation between norms and coefficients for n � 4. Color code for the arrows: blue arrows, step 1: we use (2.5); green arrows, step 2: we use (2.4); 
red arrows, step 3: we use (2.3). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

‖φn‖2
λ = λ(γn+1 + γn + 2dn − an)‖Pn‖2

+ λdn

(
(γn−1 + γn−2)(dn − an) − an(dn−2 − an−2) − bn

)
‖Pn−2‖2

+ n2‖Pn−1‖2. �
Remark 2.4. From Proposition 2.1 we get an algorithm to generate the family of Sobolev orthogonal polynomials {φn(x)}n�0
and the coefficients an and bn in terms of the previous ones. We compute the even index and the odd index separately. 
First of all, from the explicit expressions of φn(x) and P (−1,−1)

n (x), for n = 0, 1, 2, 3, given in (2.2) and (1.12), we initialize 
our algorithm with a2 = − 2

5 , a3 = − 2λ
7(λ+5)

.

Therefore, given n � 4, we suppose that we have computed all the Sobolev orthogonal polynomials {φk(x)}n−1
k=0 , and the 

coefficients {ak}n−1
k=2 , {bk}n−1

k=4 . The algorithm is given by the following steps

1. φn−4(x) −→ bn , by using expression (2.5), blue arrow,
2. (φn−2(x), an−2) −→ an , using (2.4), green arrows,
3. (φn−4(x), φn−2(x), bn, an) −→ φn , using (2.3), red arrows.

In a graphic mode, we show the algorithm in Fig. 1.

Now we study some asymptotic relations of the norms of the Sobolev orthogonal polynomials. The first one deals with 
the behavior of the Sobolev norm of the monic polynomials φn(x) in terms of the L2 norm of the monic Legendre orthogonal 
polynomials, while the second one focus the attention on the ratio of the Sobolev norms of two consecutive monic polyno-
mials φn(x) and φn−1(x). The behavior of such norms will be a useful tool in order to get the outer relative asymptotics of 
Sobolev polynomials φn(x) in terms of Legendre polynomials to be considered later on.

Proposition 2.5. The following asymptotic relations hold.

(i) lim
n→+∞

‖φn‖2
λ

n2‖Pn−1‖2 = 1.

(ii) lim
n→+∞

‖φn‖2
λ

‖φn−1‖2
λ

= 1

4
.

Notice that the limits are independent of λ.

Proof. According to the extremal property of Legendre polynomials we get

‖φn‖2
λ = λ

1∫
−1

x2φ2
n (x)dx +

1∫
−1

(φ′
n(x))2dx � λ‖Pn+1‖2 + n2‖Pn−1‖2

On the other hand, by (1.13) and (1.15) and taking into account the extremal property of monic Sobolev orthogonal polyno-
mials, we deduce
8
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‖φn‖2
λ �‖P (−1,−1)

n ‖2
λ = λ

1∫
−1

x2(P (−1,−1)
n (x))2dx + n2

1∫
−1

(Pn−1(x))2dx

= λ

1∫
−1

(
x(Pn(x) + dn Pn−2(x))

)2
dx + n2

1∫
−1

(Pn−1(x))2dx.

Using the three-term recurrence relation for Legendre polynomials (1.17),

1∫
−1

(
x(Pn(x) + dn Pn−2(x))

)2
dx

=
1∫

−1

(
Pn+1(x) + (γn + dn)Pn−1(x) + dnγn−2 Pn−3

)2
dx

= ‖Pn+1‖2 + (γn + dn)
2‖Pn−1‖2 + d2

nγ
2

n−2‖Pn−3(x)‖2.

Therefore,

‖φn‖2
λ � λ

(
‖Pn+1‖2 + (γn + dn)

2‖Pn−1‖2 + d2
nγ

2
n−2‖Pn−3‖2

)
+ n2‖Pn−1‖2.

Thus we have proved that

λ‖Pn+1‖2 + n2‖Pn−1‖2 � ‖φn‖2
λ

� λ
(
‖Pn+1‖2 + (γn + dn)

2‖Pn−1‖2 + d2
nγ

2
n−2‖Pn−3‖2

)
+ n2‖Pn−1‖2.

Dividing by ‖Pn−1‖2 and using (1.14), as a consequence we have

1 � lim
n→+∞

‖φn‖2
λ

n2‖Pn−1‖2
� 1,

so (i) follows.
Now, let us compare the norms of two consecutive Sobolev orthogonal polynomials. We get

lim
n→+∞

‖φn‖2
λ

‖φn−1‖2
λ

= lim
n→+∞

‖φn‖2
λ

n2‖Pn−1‖2

n2‖Pn−1‖2

‖φn−1‖2
λ

= lim
n→+∞

‖φn‖2
λ

n2‖Pn−1‖2

n2‖Pn−2‖2

‖φn−1‖2
λ

‖Pn−1‖2

‖Pn−2‖2

= lim
n→+∞

‖Pn−1‖2

‖Pn−2‖2
= 1

4
,

where (i) and the expression (1.14) of the norms of monic Legendre polynomials has been used. �
We can also give the asymptotics for the coefficients.

Lemma 2.6. The coefficients an and bn satisfy

lim
n→+∞an = 0, (2.7)

lim
n→+∞ bn = 0. (2.8)

More precisely, an = o(1/n2) and bn = o(1/n2).

Proof. From the expression of the connection coefficients bn (2.5),

bn = λdn
‖Pn−2‖2

‖φn−4‖2
λ

= n2‖Pn−2‖2

‖φn−4‖2
λ

λdn

n2
,

as well as the expression of the coefficients dn (1.16), we deduce (2.8), and bn = o(1/n2).
9
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Moreover, by Proposition 2.1,

a2
n‖φn−2‖2

λ = ‖P (−1,−1)
n ‖2

λ − ‖φn‖2
λ − b2

n‖φn−4‖2
λ

and, dividing by ‖φn−2‖2
λ , we get

a2
n = ‖P (−1,−1)

n ‖2
λ

‖φn−2‖2
λ

− ‖φn‖2
λ

‖φn−2‖2
λ

− b2
n
‖φn−4‖2

λ

‖φn−2‖2
λ

. (2.9)

But, using (1.15) and (1.13),

‖P (−1,−1)
n ‖2

λ

‖φn−2‖2
λ

= λ
∫ 1
−1 x2(Pn(x) + dn Pn−2(x))2dx + n2‖Pn−1‖2

‖φn−2‖2
λ

and from the three-term recurrence relation for Legendre polynomials (1.17)

1∫
−1

x2(Pn(x) + dn Pn−2(x))2dx =‖Pn+1‖2 + (γn + dn)‖Pn−1‖2

+ d2
nγ

2
n−2‖Pn−3‖2.

Then,

‖P (−1,−1)
n ‖2

λ

‖φn−2‖2
λ

= λ

n2

n2(‖Pn+1‖2 + (γn + dn)‖Pn−1‖2 + d2
nγ

2
n−2‖Pn−3‖2)

‖φn−2‖2
λ

+ n2‖Pn−1‖2

‖φn−2‖2
λ

,

and by Proposition 2.5

lim
n→+∞

‖P (−1,−1)
n ‖2

λ

‖φn−2‖2
λ

= lim
n→+∞

n2‖Pn−1‖2

‖φn−2‖2
λ

= lim
n→+∞

n2‖Pn−1‖2

‖φn‖2
λ

‖φn‖2
λ

‖φn−2‖2
λ

= lim
n→+∞

‖φn‖2
λ

‖φn−2‖2
λ

= lim
n→+∞

‖φn‖2
λ

‖φn−1‖2
λ

‖φn−1‖2
λ

‖φn−2‖2
λ

= 1

16
.

Replacing in (2.9), we prove (2.7), and an = o(1/n2). �
Using identity (2.6) we get the outer relative asymptotics of {φn}n�0 with respect to the sequence of Legendre polyno-

mials {Pn}n�0.

Theorem 2.7. Let {φn}n�0 be the Sobolev MOPS associated with (2.1), and let {Pn}n�0 be the Legendre MOPS. Then,

lim
n→+∞

φn(x)

Pn(x)
= 1

	′(x)
,

uniformly on compact subsets of C \ [−1, 1], where

	(x) = x + √
x2 − 1

2
.

Proof. It is well known (see [18, Th. 8.21.1]) that

lim
n→+∞

Pn−1(x)

Pn(x)
= 1

	(x)
,

uniformly on compact subsets of C \ [−1, 1]. Obviously this implies

lim
n→+∞

Pn−k(x)

Pn(x)
= 1

	(x)k
, (2.10)

for k � 0.
10
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Using the notation

Yn(x) := φn(x)

Pn(x)

αn(x) := an
Pn−2(x)

Pn(x)

βn(x) := bn
Pn−4(x)

Pn(x)

δn(x) := 1 + dn
Pn−2(x)

Pn(x)

equation (2.6) can be rewritten as

Yn(x) + αn(x)Yn−2(x) + βn(x)Yn−4(x) = δn(x), (2.11)

which uniquely defines the sequence {Yn}n�0 of analytic functions in C \ [−1, 1], with their corresponding initial values. It 
is clear that

|Yn(x)| � |αn(x)||Yn−2(x)| + |βn(x)||Yn−4(x)| + |δn(x)|.
From (2.7), (2.8), and (2.10) we deduce

lim
n→+∞αn(x) = lim

n→+∞βn(x) = 0, (2.12)

thus, for a fixed γ ∈R with 0 < γ < 1
2 and a given compact subset of C \ [−1, 1] there exists n0 ∈N such that

|αn(x)| < γ , |βn(x)| < γ , for n � n0.

In the same way, from

lim
n→+∞ δn(x) = 1 − 1

4

1

	(x)2
, (2.13)

and the inequality |	(x)| > 1
2 for x /∈ [−1, 1], we deduce that there exist B > 0 and n1 ∈N such that

|δn(x)| < B, n � n1.

Then, for n � max(n0, n1), we have

|Yn(x)| < γ |Yn−2(x)| + γ |Yn−4(x)| + B. (2.14)

Now, if we iterate inequality (2.14) for 0 < k < n
2 we get

|Yn(x)| < pk|Yn−2k(x)| + qk|Yn−2k−2(x)| + rk,

where the sequences {pk}k�0, {qk}k�0, and {rk}k�0 satisfy

pk+1 = γ pk + qk,

qk+1 = γ pk,

rk+1 = rk + Bpk,

which gives

pk+1 = γ pk + γ pk−1,

rk+1 = B
k∑

j=0

pk,

with initial conditions p0 = 1, p1 = γ . Solving the difference equation, we can write
11
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pk = 1

λ1 − λ2

(
λk+1

1 − λk+1
2

)
,

qk = γ
1

λ1 − λ2

(
λk

1 − λk
2

)
,

rk = B
1

λ1 − λ2

(
1 − λk+1

1

1 − λ1
− 1 − λk+1

2

1 − λ2

)
,

where λ1 and λ2 are the two different real zeros of the polynomial p(λ) = λ2 − γ λ − γ . Condition 0 < γ < 1
2 implies 

|λ1| < 1 and |λ2| < 1, which gives

lim
n→+∞ pn = lim

n→+∞ qn = 0, lim
n→+∞ rn = 1

1 − 2γ
.

So, we have

|Y2n(x)| < pn−1|Y2(x)| + qn−1|Y0(x)| + rn−1,

|Y2n+1(x)| < pn−1|Y3(x)| + qn−1|Y1(x)| + rn−1.

Taking limits when n → +∞ on the right hand side, we easily deduce that |Yn(x)| is uniformly bounded. Finally, taking 
limits in (2.11), from (2.12) and (2.13) we have

lim
n→+∞ Yn(x) = lim

n→+∞ δn(x) = 1 − 1

4	(x)2
=

√
x2 − 1

	(x)
= 1

	′(x)
,

uniformly on compact subsets of C \ [−1, 1]. �
Remark 2.8. Notice that in the previous theorem we have extended the outer relative asymptotic results for Sobolev orthog-
onal polynomials defined by coherent and symmetrically coherent pairs of measures in [12] and [15], respectively, by using 
a higher order difference equation. Outer relative asymptotics for general Sobolev orthogonal polynomials with respect to 
more general pairs of measures supported in bounded intervals have been given in [14] and [16].

Remark 2.9. As a direct consequence and taking into account the Hurwitz theorem, we get that for n large enough the zeros 
of φn(x) are located in (−1, 1).

3. The test functions

The test functions for (1.2) should be chosen in the linear space (x2 − 1) P of polynomials vanishing at the ends of the 
interval [−1, 1], and they should be orthogonal with respect to the Sobolev inner product (1.3). A basis of such polynomials 
could be computed applying the Gram-Schmidt process to the family {(x2 − 1) xk}k�0. However, in this section we generate 
a basis in a recursive way and study its properties.

Let us denote by {(x2 − 1)ψn}n�0 the monic orthogonal polynomials with respect to the Sobolev inner product 〈·, ·〉λ
defined in (1.3).

Observe that

〈(x2 − 1)ψn, (x2 − 1)ψm〉λ = λ

1∫
−1

ψn(x)ψm(x)x2(x2 − 1)2dx

+
1∫

−1

[2xψn(x) + (x2 − 1)ψ ′
n(x)][2xψm(x) + (x2 − 1)ψ ′

m(x)]dx.

We study the term of crossing derivatives and apply integration by parts, obtaining

1∫
−1

x(x2 − 1)(ψn(x)ψ ′
m(x) + ψ ′

n(x)ψm(x))dx =
1∫

−1

x(x2 − 1)(ψn(x)ψm(x))′dx

= −
1∫

−1

(3x2 − 1)ψn(x)ψm(x)dx.
12
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Therefore, the sequence of monic polynomials {ψn}n�0 is orthogonal with respect to the Sobolev inner product

〈p,q〉S =
1∫

−1

(λx2(1 − x2)2 + 2(1 − x2))p(x)q(x)dx +
1∫

−1

p′(x)q′(x)(1 − x2)2dx. (3.1)

A direct computation shows that

ψ0(x) = 1, ψ1(x) = x, ψ2(x) = x2 − 2λ + 21

6λ + 105
, ψ3(x) = x3 − 10λ + 297

22λ + 693
x,

and

‖ψ0‖2
S = 2(8λ + 140)

105
, ‖ψ1‖2

S = 2(8λ + 252)

315
,

‖ψ2‖2
S = 27(λ2 + 144λ + 2079)

33 5(154λ + 2695)
.

Remark 3.1. The measures involved in the above inner product constitute a generalized symmetrically coherent pair. If we 
denote

w0(x) = λx2(1 − x2)2 + 2(1 − x2), w1(x) = (1 − x2)2 = w(2,2)(x),

the respective weight functions, and {Q n(x; w0)}n�0 and {Q n(x; w1)}n�0 ≡ {P (2,2)
n (x)}n�0 the corresponding sequences of 

orthogonal polynomials, then

Q n(x; w1) = 1

n + 1

d

dx
Q n+1(x; w0) + α̃n

d

dx
Q n−1(x; w0) + β̃n

d

dx
Q n−3(x; w1),

for n � 1, where β̃n �= 0, n � 3, and β̃1 = β̃2 = 0.
For k-coherent pairs of measures and the corresponding sequences of Sobolev orthogonal polynomials, see [9] and [10].

We get the following connection formula between test functions and classical Jacobi polynomials.

Proposition 3.2. The following relation holds

P (1,1)
n (x) = ψn(x) + ânψn−2(x) + b̂nψn−4(x), n � 2, (3.2)

where

ân = −λ
(
γ

(1,1)
n+1 + γ

(1,1)
n + γ

(1,1)
n−1 + γ

(1,1)
n−2 − ân−2

)‖P (1,1)
n ‖2

‖ψn−2‖2
S

, n � 4, (3.3)

b̂n = −λ
‖P (1,1)

n ‖2

‖ψn−4‖2
S

�= 0, n � 4, (3.4)

and

â2 = 4λ

15(3λ + 35)
, â3 = 4λ

77(2λ + 63)
.

Proof. The Fourier expansion of P (1,1)
n in terms of the Sobolev orthogonal polynomials {ψn}n�0 yields

P (1,1)
n (x) = ψn(x) +

n−1∑
k=0

μn,kψk(x), n � 2,

where

μn,k = 〈P (1,1)
n ,ψk〉S

‖ψk‖2
S

.

Taking into account (3.1) as well as the orthogonality relations of the Gegenbauer polynomials P (1,1)
n ((1.4) with α = β = 1) 

we get, for k � n − 1,
13
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〈P (1,1)
n ,ψk〉S =

1∫
−1

P (1,1)
n (x)ψk(x)(λx2(1 − x2) + 2)(1 − x2)dx

+ n

1∫
−1

P (2,2)
n−1 (x)ψ ′

k(x)(1 − x2)2dx

=
1∫

−1

P (1,1)
n (x)ψk(x)(λx2(1 − x2) + 2)(1 − x2)dx.

Therefore μn,k = 0, k < n − 4. In addition, due to the symmetry of both P (1,1)
n and ψn , it is clear that μn,n−1 = μn,n−3 = 0, 

and then (3.2) holds.
On the other hand, the iteration of the three term recurrence relation (1.7) of the sequence {P (1,1)

n }n�0 yields

(λx2(1 − x2) + 2)P (1,1)
n (x) = − λP (1,1)

n+4 (x) + rn,0 P (1,1)
n+2 (x) + rn,1 P (1,1)

n (x)

+ rn,2 P (1,1)
n−2 (x) + rn,3 P (1,1)

n−4 (x),
(3.5)

obtaining

rn,1 = − λ
[
γ

(1,1)
n+1 (γ

(1,1)
n+2 + γ

(1,1)
n+1 + γ

(1,1)
n − 1) + γ

(1,1)
n (γ

(1,1)
n+1 + γ

(1,1)
n + γ

(1,1)
n−1 − 1)

]
+ 2, (3.6)

rn,2 = − λγ
(1,1)

n γ
(1,1)

n−1 (γ
(1,1)

n+1 + γ
(1,1)

n + γ
(1,1)

n−1 + γ
(1,1)

n−2 ), (3.7)

rn,3 = − λγ
(1,1)

n γ
(1,1)

n−1 γ
(1,1)

n−2 γ
(1,1)

n−3 . (3.8)

Therefore, taking into account that

‖P (1,1)
n ‖2 = γ

(1,1)
n ‖P (1,1)

n ‖2, (3.9)

we get for n � 4

b̂n =μn,n−4 =
∫ 1
−1 P (1,1)

n (x)ψn−4(x)(λx2(1 − x2) + 2)(1 − x2)dx

‖ψn−4‖2
S

= rn,3‖P (1,1)
n−4 ‖2

‖ψn−4‖2
S

= −λ
‖P (1,1)

n ‖2

‖ψn−4‖2
S

.

Moreover,

ân = μn,n−2 =
∫ 1
−1 P (1,1)

n (x)ψn−2(x)(λx2(1 − x2) + 2)(1 − x2)dx

‖ψn−2‖2
S

.

But the numerator reads as

rn,2‖P (1,1)
n−2 ‖2 + rn,3

1∫
−1

P (1,1)
n−4 (x)ψn−2(x)(1 − x2)dx.

Taking into account

ψn−2(x) = P (1,1)
n−2 (x) − ân−2ψn−4(x) − b̂n−2ψn−6(x),

we get

ân = rn,2‖P (1,1)
n−2 ‖2 − rn,3̂an−2‖P (1,1)

n−4 ‖2

‖ψn−2‖2
S

, n � 4.

Then, (3.3) follows using again (3.9).
The expressions of ̂a2, ̂a3 follow in a straightforward way from the fact that P (1,1)

2 (x) = ψ2(x) + â2ψ0(x) and P (1,1)
3 (x) =

ψ3(x) + â3ψ1(x) and taking into account the polynomials involved therein have been explicitly given after (3.1). �
The norms of the Sobolev orthogonal polynomials for n � 4 satisfy the following property.
14
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Proposition 3.3.

‖ψn‖2
S =
[
n(n + 3) + rn,1 + λ̂an(γ

(1,1)
n+1 + γ

(1,1)
n + γ

(1,1)
n−1 + γ

(1,1)
n−2 )

− λ(̂an̂an−2 − b̂n)
]
‖P (1,1)

n ‖2.

Proof. Using the definition of the Sobolev inner product, (1.9) and the expression (3.5), we get

‖ψn‖2
S =〈ψn, P (1,1)

n 〉S = n2‖P (2,2)
n−1 ‖2 + rn,1‖P (1,1)

n ‖2

+ rn,2

1∫
−1

P (1,1)
n−2 (x)ψn(x)(1 − x2)dx

+ rn,3

1∫
−1

P (1,1)
n−4 (x)ψn(x)(1 − x2)dx

=n2‖P (2,2)
n−1 ‖2 + rn,1‖P (1,1)

n ‖2 − rn,2̂an‖P (1,1)
n−2 ‖2

+ rn,3(̂an̂an−2 − b̂n)‖P (1,1)
n−4 ‖2,

where the constants are given by (3.6), (3.7), and (3.8). Using rn,3‖P (1,1)
n−4 ‖2 = −λ‖P (1,1)

n ‖2 and rn,2‖P (1,1)
n−2 ‖2 = −λ(γ

(1,1)
n+1 +

γ
(1,1)

n + γ
(1,1)

n−1 + γ
(1,1)

n−2 )‖P (1,1)
n ‖2 the result follows. �

Remark 3.4. An alternative expression for the norm of ψn follows from (3.2).

‖P (1,1)
n ‖S = ‖ψn‖2

S + â2
n‖ψn−2‖2

S + b̂2
n‖ψn−4‖2

S .

But

‖P (1,1)
n ‖S = n2‖P (2,2)

n−1 ‖2 + rn,1‖P (1,1)
n ‖2.

As a consequence,

‖ψn‖2
S = n2‖P (2,2)

n−1 ‖2 + rn,1‖P (1,1)
n ‖2 − â2

n‖ψn−2‖2
S − b̂2

n‖ψn−4‖2
S .

Remark 3.5. As in the previous Section, using Proposition 3.2, the algorithm to generate the second family of Sobolev 
orthogonal polynomials {ψn(x)}n�0 and the coefficients ân and b̂n in terms of the previous ones has the scheme given in 
Fig. 1, substituting the φ’s by ψ ’s, the a’s by ̂a’s, the b’s by ̂b’s, and initializing the algorithm this time with ̂a2 = 4λ

15(3λ+35)
, 

â3 = 4λ
77(2λ+63)

, and ̂b4 = − 2λ
2079(2λ+35)

.

4. Fourier analysis

Let denote by

+∞∑
n=0

ûn(x2 − 1)ψn(x),

the Fourier expansion of the solution of the BVP (1.2) in terms of the orthogonal sequence {(x2 − 1)ψn(x)}n�0, where

ûn = 〈u, (x2 − 1)ψn〉λ
〈(x2 − 1)ψn, (x2 − 1)ψn〉λ = 〈u, (x2 − 1)ψn〉λ

‖(x2 − 1)ψn‖2
λ

.

On the one hand, since u(−1) = u(1) = 0, there exists a function v(x) such that u(x) = (x2 − 1)v(x). Then, using (3.1), we 
get

ûn = 〈u, (x2 − 1)ψn〉λ
〈(x2 − 1)ψn, (x2 − 1)ψn〉λ = 〈(x2 − 1)v, (x2 − 1)ψn〉λ

‖(x2 − 1)ψn‖2
λ

=〈v,ψn〉S

‖ψn‖2
S

= v̂n,
15
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where v̂n is the coefficient of the Fourier expansion of v in terms of the Sobolev orthogonal basis {ψn(x)}n�0, as

+∞∑
n=0

v̂nψn(x).

On the other hand,

ûn‖ψn‖2
S =λ

1∫
−1

x2u(x)(x2 − 1)ψn(x)dx +
1∫

−1

u′(x)[(x2 − 1)ψn(x)]′dx

=
1∫

−1

[−u′′(x) + λx2u(x)](x2 − 1)ψn(x)dx

=
1∫

−1

f (x)(x2 − 1)ψn(x)dx =: f̃ (n).

This is the so called diagonalized spectral method for the BVP.
Taking into account (3.2), we get

1∫
−1

f (x)P (1,1)
n (x)(x2 − 1)dx = f̃ (n) + ân f̃ (n − 2) + b̂n f̃ (n − 4).

Moreover, if we denote by f
(1,1)

n the nth Fourier coefficient of the function f (x) with respect to the basis of Jacobi polyno-

mials, {P (1,1)
n }n�0, the above expression can be written as

− f
(1,1)

n ‖P (1,1)
n ‖2 = f̃ (n) + ân f̃ (n − 2) + b̂n f̃ (n − 4).

Thus, we have a method to generate recursively the sequence { f̃ (n)}n�0 assuming the initial conditions

f̃ (0) =
1∫

−1

f (x)(x2 − 1)dx, f̃ (1) =
1∫

−1

f (x)x(x2 − 1)dx,

f̃ (2) =
1∫

−1

f (x)ψ2(x)(x2 − 1)dx, f̃ (3) =
1∫

−1

f (x)ψ3(x)(x2 − 1)dx.

Notice that an alternative way to use (3.2) is the following

ûn‖ψn‖2
S + ânûn−2‖ψn−2‖2

S + b̂nûn−4‖ψn−4‖2
S =

1∫
−1

f (x)P (1,1)
n (x)(x2 − 1)dx. (4.1)

Substituting expressions (3.3) and (3.4), we get

ûn‖ψn‖2
S−λ

⎡⎣ n+1∑
i=n−2

γ
(1,1)
i − ân−2

⎤⎦ ‖P (1,1)
n ‖2

‖ψn−2‖2
S

ûn−2‖ψn−2‖2
S

− λ
‖P (1,1)

n ‖2

‖ψn−4‖2
S

ûn−4‖ψn−4‖2
S

= − f
(1,1)

n ‖P (1,1)
n ‖2,

and finally

ûn =‖P (1,1)
n ‖2

‖ψn‖2
S

⎧⎨⎩λ

⎡⎣ n+1∑
i=n−2

γ
(1,1)
i − ân−2

⎤⎦ ûn−2 + λ̂un−4 − f
(1,1)

n

⎫⎬⎭ .
16
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Remark 4.1. According to (1.10) and (1.9)

(x2 − 1)P (1,1)
n (x) = Pn+2(x) − (n + 1)(n + 2)

(2n + 1)(2n + 3)
Pn(x),

we have the expression of the right hand side of (4.1) in terms of Fourier coefficients of f in terms of the sequence of 
Legendre polynomials {Pn(x)}n�0.

5. Numerical experiments

In this section, we explore the reliability and accuracy of the Sobolev spectral method for solving elliptic boundary 
problems on the interval [−1, 1].

We examine the second order Dirichlet boundary value problem associated to the non-homogeneous Schrödinger equa-
tion with an harmonic potential

−u′′(x) + λx2u(x) = f (x),

u(−1) = u(1) = 0.

For λ = 1, the sequence of monic polynomials {(x2 − 1)ψn(x)}n�0 orthogonal with respect to the Sobolev inner product

〈u, v〉λ =
1∫

−1

u(x) v(x) x2 dx +
1∫

−1

u′(x) v ′(x)dx,

can be easily computed. For instance, the first five monic polynomials are given by

ψ0(x) = 1,

ψ1(x) = x,

ψ2(x) = x2 − 23

111
,

ψ3(x) = x3 − 307

715
x,

ψ4(x) = x4 − 9641

14456
x2 + 7779

159016
.

In our first example, we analyze the case where f (x) is a C∞ function, namely f (x) = ex(−1 − 4x − 2x2 + x4). Notice 
that the solution of the boundary value problem is u(x) = (x2 − 1)ex .

Let us denote by

+∞∑
n=0

ûn(x2 − 1)ψn(x),

the Fourier–Sobolev expansion of u(x). As we know, the coefficients ûn satisfy

ûn‖(x2 − 1)ψn‖2
λ =

1∫
−1

x2u(x)(x2 − 1)ψn(x)dx +
1∫

−1

u′(x)[(x2 − 1)ψn(x)]′dx

=
1∫

−1

[−u′′(x) + x2u(x)](x2 − 1)ψn(x)dx

=
1∫

−1

f (x)(x2 − 1)ψn(x)dx.

In Fig. 2, we plot the solution u(x) and the successive approximants

uN(x) =
N∑

ûn(x2 − 1)ψn(x),

n=0

17
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Fig. 2. The solution u(x) and the successive approximants uN (x) for N = 0,1, . . . ,4.

Fig. 3. A logarithmic plot of the errors for N = 0,1, . . . ,18.

for N = 0, 1, . . . , 4.
In Fig. 3, we show a logarithmic plot of the errors in the Sobolev norm

εN = ‖u(x) − uN(x)‖λ,

for N = 0, 1, . . . , 18. Clearly, the near straight aligned points indicate an exponential convergence rate. Observe that this 
happens not only for the approximants but also for their derivatives.

In our last example, we consider a BVP where both functions f (x) and u(x) are non-differentiable at x = −1. In fact, we 
take

f (x) = x
(
4(x − 1)x(x + 1)2 − 15

)− 9

4
√

x + 1
,

and the solution is u(x) = (x2 − 1)
√

x + 1. Of course, as a consequence of the non-differentiability at x = −1, we can not 
expect an exponential convergence rate of the approximants.

In Fig. 4, we show a simultaneous logarithmic plot of the errors in the Sobolev norm

εN = ‖u(x) − uN(x)‖λ

and the errors in the L2 norm

ε̃N = ‖u(x) − uN(x)‖L2 =
⎛⎝ 1∫

−1

(u(x) − uN(x))2dx

⎞⎠
1
2

,

for N = 0, 1, . . . , 18. The graph indicates an algebraic convergence rate for the approximants in the L2 norm.
18
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Fig. 4. A logarithmic plot of the Sobolev and L2 errors for N = 0,1, . . . ,18.
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