Mostrar el registro sencillo del ítem

dc.contributor.authorMañas Torres, María del Carmen 
dc.contributor.authorGila Vilchez, Cristina 
dc.contributor.authorVázquez Pérez, Francisco Jesús 
dc.contributor.authorBlanco Elices, Cristina
dc.contributor.authorRodríguez, Ismael Ángel
dc.contributor.authorAlaminos Mingorance, Miguel 
dc.contributor.authorÁlvarez Cienfuegos Rodríguez, Luis 
dc.contributor.authorLópez López, Modesto Torcuato 
dc.date.accessioned2021-11-29T07:56:47Z
dc.date.available2021-11-29T07:56:47Z
dc.date.issued2021-10-14
dc.identifier.citationACS Appl. Mater. Interfaces 2021, 13, 49692−49704. [https://doi.org/10.1021/acsami.1c13972]es_ES
dc.identifier.urihttp://hdl.handle.net/10481/71798
dc.descriptionThis study was supported by project FIS2017-85954-R funded by MCIN/AEI/10.13039/501100011033/FEDER "Una manera de hacer Europa", Spain, grants FIS PI20/0317 and ICI19/00024 (BIOCLEFT) (MINECO, Instituto de Salud Carlos III, Spain, cofinanced by FEDER funds, European Union), grant PE-0395-2019 (Consejeri ' a de Salud y Familias, Junta de Andalucia ', Spain), and project PPJIB2020.07 (Universidad de Granada, Spain). M.C.M.-T. acknowledges grant PRE2018-083773 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro", Spain. C.G.-V. acknowledges grant FPU17/00491 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro", Spain. P.K., D.M., and J.-C.S. acknowledge the French Agence Nationale de la Recherche, Project Future Investments UCA JEDI no. ANR-15-IDEX-01 (project RheoGels) for financial support. Funding for open access charge: Universidad de Granada/CBUA.es_ES
dc.description.abstractThe inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its threedimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc−arginine−glycine− aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.es_ES
dc.description.sponsorshipInstituto de Salud Carlos III FIS PI20/0317 ICI19/00024es_ES
dc.description.sponsorshipEuropean Commissiones_ES
dc.description.sponsorshipFSE "El FSE invierte en tu futuro", Spaines_ES
dc.description.sponsorshipFrench National Research Agency (ANR) ANR-15-IDEX-01es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.description.sponsorshipFIS2017-85954-R MCIN/AEI/10.13039/501100011033/FEDER PE-0395-2019 PPJIB2020.07 PRE2018-083773 MCIN/AEI/10.13039/501100011033 FPU17/00491es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAtribución 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectPeptides es_ES
dc.subjectHybrid hydrogelses_ES
dc.subjectBiomaterialses_ES
dc.subjectMagnetic nanoparticleses_ES
dc.subjectSelf-assemblyes_ES
dc.subjectTissue engineeringes_ES
dc.subjectRegenerative medicinees_ES
dc.titleInjectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1021/acsami.1c13972
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España