GFET Asymmetric Transfer Response Analysis through Access Region Resistances
Metadatos
Afficher la notice complèteAuteur
Toral López, Alejandro; González Marín, Enrique; Pasadas, Francisco; González-Medina, Jose María; Ruiz, Francisco G.; Jiménez, David; Godoy Medina, AndrésEditorial
MDPI
Materia
Access region GFET
Date
2019-07-18Referencia bibliográfica
Toral-Lopez, A., Marin, E. G., Pasadas, F., Gonzalez-Medina, J. M., Ruiz, F. G., Jiménez, D., & Godoy, A. (2019). GFET Asymmetric Transfer Response Analysis through Access Region Resistances. Nanomaterials, 9(7), 1027.
Patrocinador
This research was founded by Spanish government grant numbers TEC2017-89955-P (MINECO/AEI/FEDER, UE), TEC2015-67462-C2-1-R (MINECO), IJCI-2017-32297 (MINECO/AEI), FPU16/04043 and FPU14/02579, and the European Union’s Horizon 2020 Research and Innovation Program under Grant GrapheneCore2 785219.Résumé
Graphene-based devices are planned to augment the functionality of Si and III-V based
technology in radio-frequency (RF) electronics. The expectations in designing graphene field-effect
transistors (GFETs) with enhanced RF performance have attracted significant experimental efforts,
mainly concentrated on achieving high mobility samples. However, little attention has been paid,
so far, to the role of the access regions in these devices. Here, we analyse in detail, via numerical
simulations, how the GFET transfer response is severely impacted by these regions, showing that
they play a significant role in the asymmetric saturated behaviour commonly observed in GFETs.
We also investigate how the modulation of the access region conductivity (i.e., by the influence of a
back gate) and the presence of imperfections in the graphene layer (e.g., charge puddles) affects the
transfer response. The analysis is extended to assess the application of GFETs for RF applications,
by evaluating their cut-off frequency.