Mostrar el registro sencillo del ítem

dc.contributor.authorValdés Ramírez, Danilo
dc.contributor.authorMedina Pérez, Miguel Ángel
dc.contributor.authorMonroy, Raúl
dc.contributor.authorLoyola González, Octavio
dc.contributor.authorRodríguez, Jorge
dc.contributor.authorMorales, Aythami
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2020-03-05T12:48:05Z
dc.date.available2020-03-05T12:48:05Z
dc.date.issued2019-04-04
dc.identifier.citationValdes-Ramirez, D., Medina-Pérez, M. A., Monroy, R., Loyola-González, O., Rodríguez, J., Morales, A., & Herrera, F. (2019). A Review of Fingerprint Feature Representations and Their Applications for Latent Fingerprint Identification: Trends and Evaluation. IEEE Access, 7, 48484-48499.es_ES
dc.identifier.urihttp://hdl.handle.net/10481/60045
dc.description.abstractLatent fingerprint identification is attracting increasing interest because of its important role in law enforcement. Although the use of various fingerprint features might be required for successful latent fingerprint identification, methods based on minutiae are often readily applicable and commonly outperform other methods. However, as many fingerprint feature representations exist, we sought to determine if the selection of feature representation has an impact on the performance of automated fingerprint identification systems. In this paper, we review the most prominent fingerprint feature representations reported in the literature, identify trends in fingerprint feature representation, and observe that representations designed for verification are commonly used in latent fingerprint identification. We aim to evaluate the performance of the most popular fingerprint feature representations over a common latent fingerprint database. Therefore, we introduce and apply a protocol that evaluates minutia descriptors for latent fingerprint identification in terms of the identification rate plotted in the cumulative match characteristic (CMC) curve. From our experiments, we found that all the evaluated minutia descriptors obtained identification rates lower than 10% for Rank-1 and 24% for Rank-100 comparing the minutiae in the database NIST SD27, illustrating the need of new minutia descriptors for latent fingerprint identification.es_ES
dc.description.sponsorshipThis work was supported in part by the National Council of Science and Technology of Mexico (CONACYT) under Grant PN-720 and Grant 638948es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectLatent fingerprint identificationes_ES
dc.subjectMinutia descriptores_ES
dc.subjectFingerprint feature representationes_ES
dc.subjectMinutia descriptor evaluationes_ES
dc.titleA Review of Fingerprint Feature Representations and Their Applications for Latent Fingerprint Identification: Trends and Evaluationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2019.2909497


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España