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ABSTRACT Latent fingerprint identification is attracting increasing interest because of its important role
in law enforcement. Although the use of various fingerprint features might be required for successful latent
fingerprint identification, methods based on minutiae are often readily applicable and commonly outperform
other methods. However, as many fingerprint feature representations exist, we sought to determine if the
selection of feature representation has an impact on the performance of automated fingerprint identification
systems. In this paper, we review the most prominent fingerprint feature representations reported in the
literature, identify trends in fingerprint feature representation, and observe that representations designed for
verification are commonly used in latent fingerprint identification. We aim to evaluate the performance of
the most popular fingerprint feature representations over a common latent fingerprint database. Therefore,
we introduce and apply a protocol that evaluates minutia descriptors for latent fingerprint identification
in terms of the identification rate plotted in the cumulative match characteristic (CMC) curve. From our
experiments, we found that all the evaluated minutia descriptors obtained identification rates lower than
10% for Rank−1 and 24% for Rank−100 comparing the minutiae in the database NIST SD27, illustrating
the need of new minutia descriptors for latent fingerprint identification.

INDEX TERMS Latent fingerprint identification, minutia descriptor, fingerprint feature representation,
minutia descriptor evaluation.

I. INTRODUCTION
Latent fingerprint identification is an open problem that
is attracting increasing interest due to its relevance to law
enforcement [1]–[4]. A latent fingerprint could reveal the
presence of a person at a crime scene. Further, a latent finger-
printmay serve as a clue to lead police to a successful criminal
apprehension; e.g., the discovery of a criminal child pornog-
raphy network in the USA, back in 2017, started from a fin-
gerprint acquired from a digital photograph [5]. Furthermore,
the misidentification of latent fingerprints could also lead to
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the release of a criminal or, evenworse, to the apprehension of
an innocent person [6], [7]. For example, as reported by The
Innocence Project [7], a fingerprint of BrandonMayfield was
erroneously matched to a latent fingerprint found during the
investigations of the train bombing in Madrid [8]; something
similar happened to the Scottish detective Shirley McKie but
at a different crime scene [6].

Existing automatic fingerprint identification systems
(AFISs) are far from satisfying the requirements of jus-
tice departments, at least in terms of identification rate [9].
Table 1 summarizes state-of-the-art performance results
for latent fingerprint identification. Note that the Rank−1
identification rate is lower than 78.4% in the context of
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TABLE 1. Rank−1 identification rate output by state-of-the-art latent
fingerprint identification algorithms. These figures were obtained after
comparing 258 latent fingerprints, taken from NIST SD27, against several
background databases.

FIGURE 1. Fingerprint features. a) Level 1: Core, delta, and ridges.
b) Level 2: Minutiae. c) Level 3: Pores, dots, and ridge contours.

the NIST SD27 database [10]. Therefore, latent fingerprints
are an active research area with room for improvement in the
next years.

Comparing fingerprints is possible through some features
described by the ridges. Maltoni et al. [13] categorized these
fingerprint features into three levels. Level 1 features, such
as ridges, cores, and deltas (see Fig. 1-a), are highly visible
in fingerprints. Level 2 features relate to minutiae. A minutia
is a minute detail on the ridges of a fingerprint [14], often
ridge ending or bifurcation (see Fig. 1-b). Level 3 features
are intraridge details observable at the very fine level, such as
ridge contours, sweat pores, and dots (see Fig. 1-c).

Additionally, although fingerprint acquisition methods
have been classified according to different criteria [15], fin-
gerprint acquisition for law enforcement application is usu-
ally performed using traditional offline methods [13]. Some
experts have classified fingerprints acquired by these meth-
ods into the following categories: rolled impressions, plain
(or flat) impressions, and latent fingerprints [13], [16], [17].
Whereas impressions are acquired under controlled condi-
tions, latent fingerprints are unintentionally left by someone
when manipulating objects and are thus particularly useful at
crime scenes [18].

FIGURE 2. Diagram of a latent fingerprint identification pipeline.

Impressions and latent fingerprints are the inputs for two
existing applications of fingerprint matching in biometrics:
fingerprint verification and latent fingerprint identification.
Fingerprint verification aims to verify the identity of an indi-
vidual. Given the impression and claimed identity, the algo-
rithm for fingerprint verification matches this impression
with a previously stored impression from the claimed identity,
and it returns whether the comparison is matching or non-
matching [13], [19]. However, latent fingerprint identification
searches a background database for the most similar impres-
sions to the latent fingerprint in question [13], [19].

Matching algorithms (for either verification or identifica-
tion) take two fingerprints to determine whether they have
been obtained from the same finger. Fingerprints are cap-
tured via a fingerprint representation [2], [20]–[28] made
of fingerprint features. Depending on the fingerprint feature
representation, there are three types of matching algorithms:
global, local, or hybrid [13]. A matching algorithm is said
to be global if it works with a feature representation that
captures the whole fingerprint, such as cores, deltas, or the
global position ofminutiae, and local if it works with a feature
representation that captures a partial zone of a fingerprint.
Hybrid-matching algorithms are two-step algorithms: they
apply both local and global matching in that order [13].

In a latent fingerprint identification pipeline, the finger-
print feature representation constitutes a connecting data rep-
resentation between the fingerprint feature extraction stage
and the matching stage (see Fig. 2). The algorithms for
feature extraction [1], [29]–[32] generate a representation of
the fingerprint features from raw digital images; however,
in this work, we have employed fingerprint features manually
extracted by human experts. Next, the matching algorithms
compare the latent fingerprint against multiple impressions
using the same feature representation for the impression and
the latent fingerprint to return sorted score values.
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To improve the performance of a matching algorithm,
the associated fingerprint representation must developed so
that ‘‘fingerprint images belonging to the same finger form a
compact cluster (low intraclass variations) and those belong-
ing to different fingers occupy different portions of the space
(high interclass variations)’’ [13].

Although using feature representations proposed for verifi-
cation in latent fingerprint identification is commonly found
in the literature [11], [12], [16], [33], [34], there is neither
a study that aims to assess what feature representations are
more suitable for latent fingerprint identification nor a study
that explains whether the performance of an AFIS, with
a hybrid-matching approach, is attributable to the global-
matching algorithm or to the associated fingerprint feature
representation and the corresponding local-matching algo-
rithm. In contrast to [15], [35], our study aims to fill these
gaps, andwe focus on evaluating the relativemerit of a feature
representation, without considering feature extraction. Fur-
ther, even though they may not be enough for the general case
of latent fingerprint identification, we focus on evaluating
minutia descriptors, as they are often applicable and thus
quite popular. Each fingerprint in our database is expressed
in terms of basic features (minutiae and ridge flowmaps) that
have been extracted by an expert, and so we take them as our
ground truth. Using these basic features, we have reproduced
some minutia descriptors reported in the literature. Our goal
is to analyze how each of these minutia descriptors compares
to one another for latent fingerprint identification in terms of
local matching performance but independent of the global-
matching algorithm. To do so, we introduce an evaluation
protocol for quantifying the identification rate of minutia
descriptors for latent fingerprint identification. In particular,
we discuss the performance of nine minutia descriptors using
the fingerprints in the database NIST SD27 [10]. Since all
the minutiae of latent fingerprints in the NIST SD27 [10]
are manually matched against a minutia of an impression,
this is a closed-set identification application. Therefore, the
performance indicators we use in our comparison are the
identification rates plotted in the cumulative match character-
istic (CMC) curve and the weighted Rank−20 identification
rate computed from the CMC curve, according to the norm
ISO/IEC 19795-1.

The main contributions of this paper are summarized as
follows:
• An analysis of 50 fingerprint feature representations and
their suitability for representing latent fingerprints.

• A new protocol to evaluate the relative merit of minutia
descriptors for latent fingerprint identification.

• An experimental comparison of nine minutia descrip-
tors, which are suitable for latent fingerprint identifica-
tion according to our analysis.

The remainder of this paper is organized as follows.
In section II, we review the most prominent fingerprint fea-
ture representations and analyze their feasibility for latent
fingerprint identification. Section III introduces our protocol
for evaluating the identification rate of minutia descriptors for

latent fingerprint identification. In section IV, we discuss the
experimental results of the evaluation of nineminutia descrip-
tors using the NIST SD27 database [10]. Finally, in section V,
we present our conclusions and future work.

II. REVIEW OF FINGERPRINT FEATURE
REPRESENTATIONS
Fingerprint matching has been used for years [14]. How-
ever, fingerprint matching with electronic devices and algo-
rithms has received wider attention with the expansion of its
use in banking and commerce operations [36]–[40]. Early
works, like those of Grasselli [21], Sirovich [41], Liu and
Shelton [42], and Isenor and Zaky [39], presented noteworthy
ideas for fingerprint feature representations and provided a
coordinate system regarding the core and delta of the fin-
gerprint [42] and early fingerprint feature representations
based on the ridge flow, such as sampling matrix [21],
slopes matrix [41], and graph representation [39]. Later, other
works [22], [40], [43] started representing fingerprint features
based on minutiae and their relationships with other finger-
print features. Many researchers [44]–[46] proposed minu-
tia neighborhood representations that incorporate additional
information related to fingerprint features.

Although minutia descriptors are the most popular fea-
ture representations for latent fingerprints (see Table 2
and Table 3), we briefly discuss some of the advantages and
disadvantages of other representations to ensure this paper is
self-contained. Therefore, we present in this section a review
of 50 fingerprint feature representations and discuss their
suitability for representing latent fingerprints. We start by
providing a general overview of fingerprint feature repre-
sentations (section II-A). Then, in sections II-B and II-C,
the core of this review, we discuss minutia-based descriptors
by dividing our discussion into two parts: minutia descriptors
proposed for verification and minutia descriptors used for
identification. With this division, we aim to show a trend
toward representing latent fingerprints with minutia descrip-
tors that have been previously proposed for fingerprint ver-
ification and the existence of minutia descriptors suitable
for representing latent fingerprints but yet unused for latent
fingerprint identification. Further, in this review, we con-
sider four categories of minutia descriptors: image-based,
minutiae-based, texture-based, and combined minutia. This
last division is a modification of the taxonomy proposed by
Feng and Zhou [47], including an additional category with
minutia descriptors with some other combinations.

A. FINGERPRINT FEATURE REPRESENTATIONS, A
GENERAL OVERVIEW
Fingerprint feature representations have been classified
based on different criteria by some authors [13], [26],
[35], [47], [48]. According to Vij and Namboodiri [48],
fingerprint feature representations are global, local, com-
bined, or transformation-based. A global representation
describes the whole fingerprint, for example, the distance and
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TABLE 2. Summary of 50 fingerprint feature representations classified according to 5 taxonomies. Column 4 classifies feature representations according
to the fingerprint matching context: (V) verification and (I) identification. Column 5 classifies feature representations according to the level of the
fingerprint feature employed: (1), (2), and (3). Column 6 classifies feature representations according to the type of feature representation: (G) global,
(L) local, (GL) combinations of global and local, and (T) transform based. The last two columns are taxonomies exclusively for minutia descriptors.
Column 7 classifies minutia descriptors according to the origin of the features: (Mtia) minutiae, (Tex) texture, and (Img) image. Column 8 classifies
minutia descriptors according to the topology: (NN) nearest-neighbor and (FR) fixed-radius. PART I.
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TABLE 3. Summary of 50 fingerprint feature representations classified according to 5 taxonomies. Column 4 classifies feature representations according
to the fingerprint matching context: (V) verification and (I) identification. Column 5 classifies feature representations according to the level of the
fingerprint feature employed: (1), (2), and (3). Column 6 classifies feature representations according to the type of feature representation: (G) global,
(L) local, (GL) combinations of global and local, and (T) transform based. The last two columns are taxonomies exclusively for minutia descriptors.
Column 7 classifies minutia descriptors according to the origin of the features: (Mtia) minutiae, (Tex) texture, and (Img) image. Column 8 classifies
minutia descriptors according to the topology: (NN) nearest-neighbor and (FR) fixed-radius. PART II.
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the angle between the core and the delta of a fingerprint or the
positions of minutiae in a fingerprint.

A local representation describes small areas of a finger-
print, generally around a minutia (level 2 feature). Local rep-
resentations are often known asminutia descriptors [47], [49].
A minutia descriptor is a combination of the minutia repre-
sentation, which includes its coordinate and angle from the
origin of the image (ISO/IEC 19794-2:2005), with additional
information about other neighboring features [22], [23], [50].
For example, the orientation-based minutia descriptor [49]
incorporates information about the ridge orientation in a
neighborhood around a minutia, while the m-triplet [26], [51]
incorporates information about the distance and the angles
between three neighboring minutiae.

A combined representation describes the whole fingerprint
by using both global and local feature representations, e.g.,
combining minutia descriptors and the distance of minutiae
from the core. A transform-based representation could be
either global or local but uses some transforms, such as digital
wavelet transform [52], [53], digital cosine transform [54],
Fourier-Mellin transform [55], or short-time Fourier
transform [2].

Although global [40], [56]–[62] or combined [45], [48],
[63] feature representations contribute to a highly accurate
identification, a drawback of using either of these repre-
sentations is that they are not always applicable because
the required features are not always present in latent fin-
gerprints. For example, a coarse visual review of the NIST
SD27 database [10] shows that at least 65 latent fingerprints
–representing 25% of the database– do not present clearly
visible cores. Moreover, latent fingerprints present scars and
background noise that interrupt ridge flow (see Fig. 3). There-
fore, due to the requirement of the presence of global features,
these fingerprint feature representations are not always suit-
able for representing latent fingerprints.

Some authors [2], [27], [52], [54], [55], [60], [64], [65]
have proposed fingerprint feature representations based on
transforms. Nevertheless, transform-based feature represen-
tations are sensitive to brightness and rotation variations in
the fingerprint [48]. Therefore, transform-based representa-
tions are not always suitable for latent fingerprint identifi-
cation because the orientation of some latent fingerprints is
difficult to determine [28], [30] and their brightness varies
often. Indeed, Sankaran et al. [16] experimentally showed
a Rank−10 identification rate of (35.4%) using Finger-
code [64] for latent-to-latent fingerprint matching on the
IIIT-D latent database [66], the lowest among seven matching
algorithms.

B. MINUTIA DESCRIPTORS USED SOLELY IN
VERIFICATION
Unlike global representations, minutia descriptors employ
fingerprint features that are present on many latent fin-
gerprints with identification value. Moreover, minutia
descriptors are less sensitive than global, combined,
and transform-based feature representations to nonlinear

FIGURE 3. Examples of latent fingerprints without a visible core. B115 is
the code for the latent fingerprint number 115 of bad quality in the NIST
SD27. B137 is a latent fingerprint with the ridge flow interrupted (we
surrounded the interruption with a white ellipse).

distortions, brightness variations, and lack of features of
latent fingerprints [67]. Therefore, minutia descriptors have
become the most widely used fingerprint feature representa-
tions for latent fingerprints.

1) IMAGE-BASED MINUTIA DESCRIPTORS
An image-based minutia descriptor is a fingerprint feature
representation of the raw image, binarized image, or enhanced
image around a minutia in a circular or square region [47]
(see Fig. 4-a,b,c). Some authors [2], [35], [67], [68] have
proposed square areas of 8×8, 16×16, and 24×24 pixels for
computational efficiency. Consequently, image-based minu-
tia descriptors are also fixed-radius minutia descriptors [13].

An inconvenience of image-based minutia descriptors is
that they require more computational time than other minutia
descriptors to be compared regarding the window size [35].
Additionally, the image information around a minutia could
be represented using transforms [2], [27], [55], becoming
a transform-based feature representation and suffering sim-
ilar issues as the transform-based feature representations.
Another disadvantage of image-based minutia descriptors is
related to noisy areas in latent fingerprints, which can largely
differ from their mated area in the impressions because latent
fingerprints present noisy backgrounds, brightness variations,
image quality variations, and scars (see Fig. 3). These char-
acteristics make image-based minutia descriptors less suit-
able for representing latent fingerprints than other minutia
descriptors.

2) MINUTIA-BASED MINUTIA DESCRIPTORS
A minutia-based minutia descriptor represents the relation-
ship between minutiae in a neighborhood, such as distance
and direction difference. Some authors have defined this
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FIGURE 4. Mated fingerprint pair (impression and latent fingerprints)
number 137 of bad quality (B137) in the NIST SD27 database showing the
low quality and noise of a latent fingerprint. a) Impression, b) raw
grayscale image of the latent fingerprint, and c) binarized image of the
latent fingerprint.

neighborhood using nearest-neighbor minutiae, while others
have defined this neighborhood as all the minutiae in a fixed-
radius area [47].

A disadvantage of nearest-neighbor minutia descriptors
relates to the presence of absent or spurious minutiae,
which is common on latent fingerprints. For example,
Zhang and Wang [69] introduced the 4-nearest-neighbor
minutiae, describing the neighborhood of a minutia with
the four nearest minutiae. The authors code each neighbor-
ing minutia as a vector with its distance from the main
minutia, orientation difference, angle between its orientation
and the connecting edge, and the angle between its con-
necting edge and the connecting edge of the main minutia
with the next minutia in the clockwise direction. Similarly,
Chikkerur et al. [70] proposed K-Plet for representing fin-
gerprint features using minutiae. K-Plet consists of a neigh-
borhood of K minutiae around a main minutia. Each minutia
of the neighborhood is defined according to its local radial
coordinates, including distance, orientation difference, and
angle with respect to the main minutia of the neighborhood.
Neighboring minutiae are selected by quadrants to achieve
a representation of each quadrant. However, this selection
makes K-Plet unsuitable for representing latent fingerprints,
which suffer from the existence of spurious or absent minu-
tiae and lack of minutiae in some quadrants, mostly in noisy
zones.

Another nearest-neighbor minutia descriptor widely used
for minutiae is the minutiae triplet. A special case of minu-
tiae triplets is the Delaunay triangulation [71] used by some
authors for fingerprint matching [72], [73]. The limitation
of the Delaunay triangulation for representing latent finger-
prints relates to the high number of absent and spurious

minutiae: different Delaunay triangulations may be obtained
from mated fingerprints when they present different sets of
minutiae, resulting in misidentification.

Jea and Govindaraju [74] presented a modification to the
minutia descriptor of Jiang and Yau [23] by considering the
two nearest minutiae to each main minutia according to the
angular distances rather than the Euclidean distance proposed
by Jiang and Yau [23]. They also removed the minutia type
and ridge count, thus making this minutia descriptor suitable
for representing partial and noisy fingerprints according to
their analysis. They reported an improvement in the minutia
descriptor of Jiang and Yau [23] based on their experimental
results on fingerprint verification. Hence, we compare both
minutia descriptors on latent fingerprint identification but
without employing a global-matching algorithm.

Fixed-radius minutia descriptors are less affected by absent
and spurious minutiae. However, minutiae near the border
area could be in or out of the neighborhood due to nonlinear
distortions. For instance, the structural data model proposed
by Hrechak and McHugh [22] creates a minutia descriptor as
a nine-dimensional vector including the number of minutiae
of each type in a neighborhood of fixed radius. Thus, for a low
radius, the number of minutiae decreases the identification
value of the descriptor, and for a large radius, nonlinear distor-
tion means that minutiae in the border area could be in or out
of the descriptor. Additionally, the authors defined eight types
of minutiae: termination, bifurcation, island, spur, crossover,
bridge, and small crests. Nevertheless, some authors [25],
[74]–[76] have claimed that the use of several minutia types is
not suitable for representing latent fingerprints because they
can easily be confused due to the difference of pressure of
the finger over the surface and the background noise of the
surface.

Wahab et al. [46] modified the structural data model to
improve the local-matching algorithm. However, their pro-
posal presented similar deficiencies for latent fingerprint
identification.

3) TEXTURE-BASED MINUTIA DESCRIPTORS
A texture-based descriptor employs the texture information
around a minutia to represent fingerprints. Texture informa-
tion may include ridge orientation, frequency, or period. Sev-
eral authors [56], [77], [78] have employed the texture infor-
mation around minutiae to represent fingerprints. They have
created minutia coordinate systems based on ridges or have
included additional components to the (ISO/IEC 19794-
2:2005) minutiae representation.

For example, Lee et al. [77] included the ridge frequency
as a new component of the minutia representation. They
defined the ridge frequency as the number of ridges within
a predefined window around minutia. The ridge frequency
was used later in latent fingerprint representation by other
authors [11], [79] and improved the identification rate.

Other studies [56], [78], [80]–[82] proposed minutia
descriptors similar to the orientation-based minutia descrip-
tor proposed by Tico and Kuosmanen [49] (discussed in
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subsection II-C3). However, these studies made the
orientation-based minutia descriptor rely on the global fea-
tures of the fingerprint, creating descriptors that are more
affected by nonlinear distortion, which is often present on
latent fingerprints.

As an exception, thework of Shi andGovindaraju [81] does
not employ global features but rather modifies the criteria to
select the sampled points using a spiral partition scheme for
fingerprint verification. In addition, they combined the tex-
ture information with minutiae in a neighborhood. Accord-
ing to their experimental results on fingerprint verification,
we propose that it is worth exploring this variation to improve
the performance of orientation-based minutia descriptors for
latent fingerprint representation.

4) COMBINED MINUTIA DESCRIPTORS
The combination of various fingerprint features in minutia
descriptors is beneficial for representing latent fingerprints
with a small area but with an identification value [83].
Indeed, several studies [11], [24], [57], [60], [63], [79], [81],
[84] have combined minutia descriptors based on different
fingerprint features and obtained encouraging results. For
example, Feng [24] proposed a minutia descriptor combining
a frequency-based descriptor and a minutiae-based descrip-
tor. This combined minutia descriptor was subsequently
adapted to represent latent fingerprints by Jain et al. [79] and
Jain and Feng [11] and improved the identification rate that
had been reported thus far.

In contrast, some proposed combinations are not suit-
able for latent fingerprint identification. For example, the
performance of the location-based spectral minutiae
representation and the orientation-based spectral minu-
tiae representation [55] decreases when the number of
absent or spurious minutiae is greater than 20%. Similarly,
the keypoint [84] is a combination of minutiae-based, texture-
based, and orientation-based descriptors. However, a valid
keypoint should contain at least n neighboring minutiae
within a circle of radius R. Both minutia descriptors are
sensitive to the lack of minutiae often suffered by latent
fingerprints.

Some minutiae-based descriptors introduced the ridge
count between minutiae in a neighborhood [23], [43], [50],
[85], creating combined-feature minutia descriptors. For
instance, Chen and Kuo [43] proposed a minutiae-based
descriptor that includes the ridge count between minutiae in
a specified neighborhood with respect to the main minutia
(the minutia selected as the coordinate origin of the minutia
descriptor). Furthermore, Jiang and Yau [23] described a
minutia descriptor by minutia type, distance, ridge count,
direction, and radial angle from the main minutia to each
of the l-nearest minutiae in a neighborhood. In contrast,
some authors [74], [86] have claimed that ridge count and
minutia type are not feasible for some latent fingerprints
because minutia type can be easily confused and ridge count
is affected by scars or noisy zones that are often present in
latent fingerprints (see Fig. 3). Thus, to use ridge count in

latent fingerprints, it would be necessary to determine the
quality of the ridges. However, because Cao and Jain [2]
proposed exploring the use of ridge count for latent finger-
print identification, we determined its effect by comparing the
identification rates of a pair of minutia descriptors with [23]
and without [74] ridge count.

C. MINUTIA DESCRIPTORS USED FOR IDENTIFICATION
1) IMAGE-BASED MINUTIA DESCRIPTORS
Most image-based minutia descriptors [55], [60], [63], [65],
[87]–[89] have been employed only for fingerprint verifica-
tion due to their limited applicability for latent fingerprint
identification. However, some authors [1], [2], [28], [32],
[90], [91] have recently employed deep learning for latent
fingerprint identification by primarily using raw images of
latent fingerprints. For example, Cao and Jain [2], [3] trained
14 different convolutional neural networks with multiple
patches extracted for the same minutia with different sizes
and at different locations. All patches of a minutia corre-
sponded to the same class. They employed different images
of the same fingerprint impression to obtain different patches.
Each convolutional neural network output a 128-dimensional
vector as the feature vector of the minutia. Hence, a minutia
descriptor is the concatenation of a subset of the 14 feature
vectors output by the 14 convolutional neural networks.

Additionally, the authors generated a set of virtual minu-
tiae, one by each nonoverlapping block, to overcome the lack
of real minutiae in latent fingerprints. Consequently, they rep-
resented the whole latent fingerprint using minutia descrip-
tors with the output of the convolutional neural networks
for virtual and real minutiae. The matching score between
two minutia descriptors is computed based on the cosine
distance. One of the main contributions of this study is the
Rank−1 identification rate achieved (64.7%) for comparing
latent fingerprints in the NIST SD27 database against a back-
ground database with 100, 000 impressions, which involved
fully automated the feature extraction, except in the region of
interest.

2) MINUTIA-BASED MINUTIA DESCRIPTORS
Minutia-based minutia descriptors are the most widely used
fingerprint feature representation for latent fingerprint iden-
tification [12], [26], [33], [34], [92]. One of the most popular
descriptors is the Minutia Cylinder-Code (MCC), proposed
by Cappelli et al. [25] (see Table 3). The main minutia of
the MCC is rotated with a predefined step, and each rota-
tion of the minutia incorporates a slice to a cell-discretized
cylinder. Each slice presents a predefined number of cells.
For each cell, a numerical value is calculated by accumu-
lating the contributions of the minutiae belonging to the
neighborhood. Several authors [12], [33], [34], [92] have
successfully employed MCC for latent fingerprint identifi-
cation. Since MCC encodes the spatial and directional rela-
tionships between the minutia and its neighbor in a fixed-
radius area, it is a suitable fingerprint feature representation
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for latent fingerprints. The expanded triangle set proposed by
Hernández-Palancar et al. [76] uses Delaunay triangulation
to represent latent fingerprints. Delaunay triangulation builds
minutia descriptors by relating near points [71] (minutiae in
a fingerprint), which is suitable for latent fingerprint repre-
sentation. However, absent and spurious minutiae affect these
fingerprint representations. Indeed, the authors reported a
Rank−1 identification rate of 58.13% when comparing 258
latent fingerprints against a background database of 29, 258
impressions, and this Rank−1 identification rate was lower
than that reported by Medina-Pérez et al. [12] (68.6%), who
also used a minutia-based descriptor [51] based on the rela-
tion among three minutiae.

Hoyle et al. [93] mined minutia triangles to find distinctive
features. They used a minutia-triplet descriptor, where any
combination of three minutiae with a distance lower than a
threshold formed a triplet. The authors used pairwise dis-
tances, ridge count, and whether each pairwise minutia lies
on a shared-ridge segment. However, the authors did not
report the performance of their algorithm on a latent fin-
gerprint database. In addition, by removing the ridge count,
the minutia-triplet descriptor is similar to another proposed
by Medina-Pérez et al. [51]

Medina-Pérez et al. [51] introduced m-triplets. An m-
triplet includes three minutiae arranged clockwise in a set
and contains the maximum, middle, and minimum distances
between minutiae, the angles required to rotate the direction
of a minutia to superpose it to the vectors associated with the
other two minutiae in the triplet, and the angle required to
rotate the direction of aminutia to superpose it to the direction
of the other two minutiae. Later, Medina-Pérez et al. [12]
used the m-triplets [51] for latent fingerprint representation,
achieving a Rank−1 identification rate of 68.6% when com-
paring the latent fingerprints in the NIST SD27 [10] against
a background database of 29, 258 impressions from three
different NIST databases. The latent fingerprint identifica-
tion algorithm achieves similar identification rate using three
minutia descriptors: m-triplets 68.6%, MCC 69% [25], and a
neighboring minutia-based descriptor 64.3% [11], indicating
that the global-matching algorithm performs well with these
three minutia descriptors.

3) TEXTURE-BASED MINUTIA DESCRIPTORS
Bohné and Despiegel [75] presented the local skeleton
descriptor, which is a coordinate system based on a selected
curve segment along the direction of the ridge flow. Minutiae
around a predefined neighborhood are projected on the local
skeleton descriptor. The coordinate of the minutia is the
algebraic curvilinear distance between the projection of the
minutia on the curve segment and the signed ridge count
between the minutia and the projection of the minutia on
the curve segment. Although this fingerprint feature repre-
sentation was used for latent fingerprints, the performance
achieved was low; namely, the Rank−1 identification rate
was below 35% when comparing latent fingerprints in the

NIST SD27 database [10] against a background databasewith
1, 258 impressions.
The orientation-based minutia descriptor, published by

Tico and Kuosmanen [49], characterized each minutia loca-
tion according to the orientation of the ridges in sampled
points around a minutia regardless of the position and ori-
entation of the finger. This descriptor is a fixed-radius and
texture-based minutia descriptor that describes ridge ori-
entation in local representations around a minutia. These
properties make it suitable for latent fingerprint feature
representation.

The orientation-based minutia descriptor [49] has been
improved by other authors [11], [24], [79] for fingerprint
verification and latent fingerprint identification. Feng [24]
proposed a texture-basedminutia descriptor incorporating the
ridge frequency to the ridge orientation at each sampled point
in a fixed-radius neighborhood for fingerprint verification.
Later, other authors [11], [79] employed this texture-based
minutia descriptor with other descriptors for improving the
identification rate of latent fingerprint identification.

4) COMBINED MINUTIA DESCRIPTORS
Jain and Feng [11] combined various minutia descriptors
for latent fingerprint identification. Although the authors did
not report a new minutia descriptor, they showed the conve-
nience of combining many fingerprint features and minutia
descriptors. They improved the Rank−1 identification rate to
up to 74% when comparing latent fingerprints in the NIST
SD27 database [10] against a background database of 29, 257
impressions from three different NIST databases.

Finally, other authors [44], [89], [94] have reported finger-
print feature representation with level 3 features. However,
Jain and Feng [11] published a study showing that level
3 features do not improve the identification rates achieved
with level 2 features on latent fingerprint identification,
at least using the NIST SD27 database [10].

D. SUMMARY OF THE REVIEW OF FINGERPRINT FEATURE
REPRESENTATIONS
Table 2 and Table 3 summarize our review of 50 fin-
gerprint feature representations classified according to five
taxonomies.We have included the classification of the finger-
print feature representations in terms of twomore taxonomies
proposed by Maltoni et al. [13] according to the topology
of the representation and the level of the features employed.
Table 2 and Table 3 show that 39 of the 50 fingerprint feature
representations revised include local representations; further-
more, 30 are minutia descriptors, which supports our interest
in minutia descriptors.

In Section II-B and Section II-C, we discussed the robust-
ness of 30 minutia descriptors to nonlinear distortions,
background noises, brightness variations, and the insuffi-
cient number of features on latent fingerprints. Moreover,
we analyzed whether these descriptors were used for latent
fingerprint identification. From these analyses, we ended
up choosing nine minutia descriptors to conduct our
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TABLE 4. Minutia descriptors selected to be evaluated with the proposed
evaluation protocol. We have defined a minutia descriptor ID indicating
the authors to be used in our experiments.

experimental comparison (see Table 4). Among these nine
minutia descriptors, we included two pairs ofminutia descrip-
tors (J&Y and J&G) and (T&K and Feng) with the aim of
evaluating the impacts of ridge count, minutia type, and ridge
frequency on latent fingerprint identification. The minu-
tia descriptor proposed by J&Y [23] employs ridge count
and minutiae type, but the minutia descriptor proposed by
J&G [74] is a modification that does not use ridge count
and minutiae type. Moreover, the descriptor proposed by
Feng [24] incorporates ridge frequency in the orientation-
based minutia descriptor T&K [49].

III. EVALUATION PROTOCOL FOR MINUTIA
DESCRIPTORS IN LATENT FINGERPRINT
Having selected minutia descriptors in terms of suitability
for latent fingerprint identification, we now proceed to elab-
orate on the evaluation protocol to be used for obtaining an
overall conclusion. Our evaluation protocol aims to quantify
the suitability of minutia descriptors for representing latent
fingerprints by performing only local matching and using the
same fingerprint database: NIST SD27 [10]. We use the local
matching algorithm proposed with each minutia descriptor
to compute the similarity between each minutia of the latent
fingerprint and each minutia of the impressions [11].

Our evaluation protocol for minutia descriptors is par-
tially inspired by the one proposed by Feng and Zhou [47].
Feng and Zhou [47] evaluated minutia descriptors for finger-
print verification. Therefore, their protocol compares minutia
descriptors computed from mated impressions. They used
fingerprint features automatically extracted from the database
FVC2002 DB1_A [103]. Further, they employed (precision
vs. recall) as the evaluationmetric. In contrast, we compare all
minutiae in latent fingerprints against all minutiae in impres-
sions of the database to determine the performance of each
minutia descriptor. Additionally, we evaluate the results of the
local-matching algorithms against a ground truth manually
marked by latent examiners and ridge flow maps manually
marked by the authors. Furthermore, we employ CMC [104]
curves as an evaluation measure adopting the norm ISO/IEC
19795-1, which indicates that CMC curves should be used

for closed-set identification, while CMC and DET or ROC
curves [105], [106] should be used for open-set identification.

As numerical measures of the CMC curve, we use the
Rank−1, Rank−100, and weighted Rank−20 identification
rates [107]. The Rank−1 and Rank−100 identification rates
are well-known metrics of the CMC curve that quantify the
ratio of correct identifications in the first place and among
the 100 first ranks, respectively, returned by an identifica-
tion algorithm. On the other hand, the weighted Rank−M
identification rate proposed by DeCann and Ross [107] is the
weighted sum of the identification rate of the first M ranks
in the CMC curve, assigning higher weights to lower ranks.
Thoseweights are computed as the inverse of the rank number(
wi = 1

Ranki

)
and normalized such that

∑
wi = 1 [107].

The input for our evaluation protocol is a set of minutia
descriptors extracted from latent fingerprints, a set of minutia
descriptors extracted from impressions, an algorithm (δ) that
locally matches the minutia descriptors of the latent finger-
prints against the minutia descriptors of the impressions, and
the set of matching minutiae as the manually marked latent
examiners (see Algorithm 1).

First, we match every minutia descriptor of the latent fin-
gerprints against every minutia descriptor of the impressions.
Next, we compare the matching results of the local-matching
algorithm with a ground truth, adding each matching pair
to matching or nonmatching lists. Finally, from these lists,
we compute the CMC curve to measure the identification rate
of the minutia descriptor. Fig. 5 shows the flow diagram of
the evaluation protocol. An implementation of this evaluation
protocol for minutia descriptors of latent fingerprints using
C# is available at: Evaluation protocol code.

IV. RESULTS AND DISCUSSION
Our experiments show the identification rates of nine minu-
tia descriptors in terms of their CMC curves. We evalu-
ated two possible scenarios for local matching according
to the orientation difference between minutiae described by
Kovács-Vajna [67]: minutia pairs with an orientation differ-
ence between [−π/4, π/4] (restricted rotation) and minutia
pairs without orientation restriction (free rotation).

The latent fingerprint database employed in our experi-
ments is the NIST SD27 database [10], which is a public
database with 258 latent fingerprints and their mated impres-
sions with matching minutiae manually marked by latent
examiners; the database comprises 5, 460 minutiae in the
latent fingerprints and 27, 426 minutiae in the impressions.
To explore both scenarios, we computed the orientation dif-
ferences of the mated minutiae pairs on NIST SD27 [10]
and found that 457 (8.37% of the database) mated minutiae
pairs have an orientation difference > ±π/4. Additionally,
we used a proprietary database to train the minutia descrip-
tor C&J [2] since we do not have access to the databases
employed in their experiments.

Finally, in our experimental setup, to avoid differences
related to hardware, we performed our experiments simulta-
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Algorithm 1 Evaluation Protocol forMinutia Descriptors
on Latent Fingerprints

function evaluationProtocol (L, T , δ, H )
Data:
• L = {L1,L2, . . . ,Ln}, where Li is the set of minutia
descriptors extracted from the i-th latent fingerprint.

• T = {T1,T2, . . . ,Tm}, where Tj is the set of minutia
descriptors extracted from the j-th impression.

• δ(Li,Tj) is an algorithm that locally matches the
minutia descriptors of Li and Tj. It returns a set M of
matching triplets (q, p, s), where q and p are
minutiae of the latent fingerprints and impressions
(respectively) being compared; s is the similarity
value of q and p computed from their respective
minutia descriptors; and M is empty at first.

• H is the set of true matching minutia pairs (q, p)
provided by latent examiners (ground truth), where q
belongs to a latent fingerprint and p belongs to the
true matching impression.

Result: CMC curve points
begin

Let M ←− φ be the set of matching triplets
Let N ←− φ be the set of nonmatching triplets
foreach Li ∈ L do

foreach Tj ∈ T do
Match locally the latent fingerprint with
descriptors Li against the impression with
descriptors Tj and store the resulting
matching triplets in R; i.e. R← δ(Li,Tj)

end
foreach (q, p, s) ∈ R do

if (q, p) ∈ H then
M ← M ∪ {(q, p, s)}

else
N ← N ∪ {(q, p, s)}

end
end

end
Compute and return the CMC curve from M and N

end

neously on a server with an Intel Xeon E5-2670 v3 processor
(48 virtual processors), 1 TB of RAM, and a 1 TB hard drive.

A. ANALYSIS OF THE IDENTIFICATION RATE OF THE
MINUTIA DESCRIPTORS REGARDING THE CMC CURVE
The CMC curve reports comparisons between the minutiae
of latent fingerprints (5, 460) against minutiae of impres-
sions (27, 426) on NIST SD27 [10]. We plotted the x-axis
of this curve on a logarithmic scale to emphasize the iden-
tification rate of the local-matching algorithms for the first
100 ranks. We chose a logarithmic scale because fingerprints
usually present between 100 and 200 minutiae [13], and thus,

FIGURE 5. Flow diagram of the evaluation protocol for minutia
descriptors on latent fingerprints.

matching algorithms rarely compare more than 100 minu-
tiae. Notice that there are observable differences between
minutia descriptors in terms of their CMC curves for the
first 100 ranks, indicating that the selection of the minutia
descriptor might impact the performance of an AFIS.

Since NIST SD27 has 8.37% of the matching minutiae
pairs with an orientation difference > ±π/4, local-matching
algorithms with restricted fingerprint rotation falsely reject
around 8% of the matching minutiae pairs, which explains
the horizontal line of the curves starting at an identification
rate of ≈ 82% in Fig. 6-a.
Table 5 corroborates the visual results depicted in Fig. 6 by

three values of identification rates.
MCC describes the best CMC curves until Rank−100 in

both scenarios. MCC intrinsically combines all information
of minutiae and ridges by neighborhood. Each cell of a slice
in a cylinder captures the contribution of their nearest minu-
tiae with similar orientation to the main minutia, which is
how MCC combines the information of minutiae and ridges:
ridges determine the orientation of a minutia, and MCC cap-
tures all minutiae in a neighborhood.Moreover,MCC has soft
borders of the neighborhood to solve the problem of minutiae
near the border, which may be in or out of the local structure
depending on the nonlinear distortion of the fingerprint. Con-
sequently, MCC achieved the highest identification rates for
most of the rank values lower than 100 in both scenarios.
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FIGURE 6. CMC curve Rank−27, 426 of the selected minutia descriptors
comparing minutiae in the NIST SD27 database. The x-axis is plotted on a
logarithmic scale to emphasize the identification rate of the
local-matching algorithms for the first 100 ranks. We performed two
minutia descriptor evaluations considering a) restricted fingerprint
rotation and b) free fingerprint rotation.

Nevertheless, note that the identification rates do not
indicate that the problem of local representation of latent
fingerprints with minutia descriptors is solved. Indeed,
MCC ranks the matching minutia descriptor of the 100 first
ranks 21.56% of the time with restricted rotation. Therefore,
further research is needed to decrease the percentage of time
(approximately 80%) that the matching minutia descriptor is
not identified among the 100 first ranks.

In addition, the curves and metrics depict that J&Y
achieved a greater identification rate than J&G regarding
all metrics in both scenarios. Consequently, we claim that
employing ridge count and minutia type is suitable for latent
fingerprint identification, at least for local matching and con-
sidering the 100 top-scored minutiae of the impressions in the
NIST SD27 [10] database. Furthermore, Fig. 6 and Table 5
show that the minutia descriptor Feng achieved lower iden-
tification rates than T&K in both scenarios. Therefore, ridge
frequency is not an extended feature that improves the latent

TABLE 5. Identification rate output by the evaluation protocol for the
selected minutia descriptors. We list the identification rates for two
scenarios considering a) restricted fingerprint rotation and b) free
fingerprint rotation. Minutia descriptors are sorted in descending order
according to the Rank−1 identification rate. We use bold typeface to
emphasize the highest identification rate for each rank; the higher the
identification rate is, the better performance of the minutia descriptor.

fingerprint identification while considering the 100 top-
scored minutiae of the impressions in NIST SD27 [10].

We also found that the variations between the identification
rates with restricted and free rotation are lower than 2%
for Rank−1, 4% for weighted Rank−20, and 8% for
Rank−100. Considering that 8.37% of the matchingminutiae
pairs in NIST SD27 have an orientation difference > ±π/4,
we claim that fingerprint rotation does not affect the perfor-
mance of minutia descriptors in terms of the identification
rates Rank−1, Rank−100, and weighted Rank−20, at least
in the NIST SD27 database.

Finally, we emphasize the results of the minutia descriptor
C&J. Although this descriptor can be used for automatic
fingerprint feature extraction andwe trained it with a different
database than the one employed by the authors, its identifica-
tion rates are similar to most of the other minutia descriptors
(see Table 5). Additionally, we should note that C&J is an
emerging minutia descriptor that uses deep learning, which
has opened the door to new research topics in the area of latent
fingerprint identification. Therefore, new minutia descriptors
based on deep learning could reduce the gap between latent
fingerprint identification and fingerprint verification in terms
of their respective error rates in the near future.

V. CONCLUSIONS
From our review, we found that minutia descriptors are
the most widely used fingerprint feature representations for
fingerprint verification and latent fingerprint identification.
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We provide a table with 50 fingerprint feature representations
classified as five taxonomies, of which most (30) are minutia
descriptors. We selected nine of those minutia descriptors
based on their robustness to noise, brightness variation, non-
linear distortion, and lack of features suffered by latent fin-
gerprints to evaluate their performance for latent fingerprint
identification. Hence, we developed an evaluation protocol
to compute the identification rates of these nine minutia
descriptors in the NIST SD27 database.

Our results show differences among minutia descriptors in
terms of their CMC curves, indicating that the selection of the
minutia descriptor might impact the performance of an AFIS.
The best performance was obtained for the MCC descriptor
in the NIST SD27 database. Nevertheless, the identification
rates achieved by its local-matching algorithm indicate that
there is large room for improvement (the identification rates
were lower than 10%, 13%, and 24% for Rank−1, weighted
Rank−20, and Rank−100, respectively).

Additionally, we found that a rotation difference > ±π/4
between minutiae in the latent fingerprint and impression
affects the performance of the minutia descriptors by less
than 2% for Rank−1, 4% for weighted Rank−20, and 8%
for Rank−100 in the NIST SD27 database.
Finally, we observed that ridge count and minutia type

are suitable features for latent fingerprint identification by
comparing the identification rates of the minutia descrip-
tors proposed by Jiang and Yau and Jea and Govindaraju
in our evaluation protocol. However, ridge frequency does
not improve the performance for latent fingerprint identifi-
cation when locally matching latent fingerprints in the NIST
SD27 database, according to the identification rates of the
minutia descriptors proposed by Tico and Kuosmanen and by
Feng.

In future work, we recommend developing new minutia
descriptors that combine fingerprint features starting from
the most accurate descriptors found in these experiments and
considering ridge count, minutia type, and minutia descrip-
tors based on deep learning. Furthermore, we are working
on a similar analysis for latent palm print due to the lack
of analysis of the suitability of palm print representation for
latent palm print identification.
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