Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Varo, Pilares_ES
dc.contributor.authorJiménez Tejada, Juan Antonio es_ES
dc.contributor.authorMarinov, Ognianes_ES
dc.contributor.authorCarceller Beltrán, Juan Enrique es_ES
dc.contributor.authorChen, C.H.es_ES
dc.contributor.authorDeen, Jamales_ES
dc.date.accessioned2017-06-06T07:47:02Z
dc.date.available2017-06-06T07:47:02Z
dc.date.issued2017
dc.identifier.citationLópez Varo, P.; et al. Boundary condition model for the simulation of organic solar cells. Organic Electronics, 48: 85-95 (2017). [http://hdl.handle.net/10481/46656]es_ES
dc.identifier.issn1566-1199
dc.identifier.urihttp://hdl.handle.net/10481/46656
dc.description(c) 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.descriptionhttp://www.sciencedirect.com/science/article/pii/S1566119917302434es_ES
dc.description.abstractOrganic solar cells (OSCs) are promising photovoltaic devices to convert solar energy into electrical energy. Their many advantages such as lightweight, flexibility and low manufacturing costs are intrinsic to the organic/polymeric technology. However, because the performance of OSCs is still not competitive with inorganic solar cells, there is urgent need to improve the device performance using better designs, technologies and models. In this work, we focus on the developing an accurate physics-based model that relates the charge carrier density at the metal-organic boundaries with the current density in OSCs using our previous studies on single-carrier and bipolar diodes. The model for the boundary condition of the charge carrier density at the interfaces of OSCs follows a power-law function with the current density, both in dark and under illumination, and simulated current-voltage characteristics are verified with experimental results. The numerical simulations of the current-voltage characteristics of OSCs consider well-established models for the main physical and optical processes that take place in the device: light absorption and generation of excitons, dissociation of excitons into free charge carriers, charge transport, recombination and injection-extraction of free carriers. Our analysis provides important insights on the influence of the metal-organic interfaces on the overall performance of OSCs. The model is also used to explain the anomalous S-shape current-voltage curves found in some experimental data.en_EN
dc.description.sponsorshipThis work was supported by Ministerio de Educación y Ciencia under research Grant FPU12/02712 and MINECO/FEDER under research Project MAT2016-76892-C3-3-R, and the Canada Research Chair program, NSERC ResEau strategic network and the NCE IC-IMPACTS.en_EN
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.subjectOrganic solar cellsen_EN
dc.subjectModeling en_EN
dc.subjectBoundary conditions for simulationen_EN
dc.subjectCharge carrier density at interfacesen_EN
dc.titleBoundary condition model for the simulation of organic solar cellsen_EN
dc.typepreprintes_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.orgel.2017.05.046


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License