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Abstract

Organic solar cells (OSCs) are promising photovoltaic devices to convert solar energy into electrical energy. Their many advantages

such as lightweight, flexibility and low manufacturing costs are intrinsic to the organic/polymeric technology. However, because the

performance of OSCs is still not competitive with inorganic solar cells, there is urgent need to improve the device performance using

better designs, technologies and models. In this work, we focus on the developing an accurate physics-based model that relates

the charge carrier density at the metal-organic boundaries with the current density in OSCs using our previous studies on single-

carrier and bipolar diodes. The model for the boundary condition of the charge carrier density at the interfaces of OSCs follows

a power-law function with the current density, both in dark and under illumination, and simulated current-voltage characteristics

are verified with experimental results. The numerical simulations of the current-voltage characteristics of OSCs consider well-

established models for the main physical and optical processes that take place in the device: light absorption and generation of

excitons, dissociation of excitons into free charge carriers, charge transport, recombination and injection-extraction of free carriers.

Our analysis provides important insights on the influence of the metal-organic interfaces on the overall performance of OSCs. The

model is also used to explain the anomalous S-shape current-voltage curves found in some experimental data.
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1. Introduction

Organic-polymeric (hereafter, we use organic to mean both

organic and polymeric) solar cells (OSCs) can play an impor-

tant role in the future photovoltaics market. OSCs have impor-

tant advantages such as simplicity of the production processes,

the low processing temperatures, printing over large area and

flexible substrates, low weight, and low environmental impact

that are intrinsic to organic materials. Despite these advantages,

the economic potential of OSCs is not realized because present-

day conversion efficiencies are not high enough for their large-

scale use in the energy industry. Therefore, there are much re-

search and technology development efforts to bring this tech-

nology up to the required level to be economically viable for

widespread use.

Currently, much research and technology development of

OSCs is focused on improving efficiency of stable, long-

lifetime devices [1–4]. An attractive way to improve the per-

formance of OSCs is through simulation and modeling which

allow for both reduction in both costs and development time of

the technology. For accurate prediction of OSCs performance,

the main physical-chemical mechanisms: light propagation in

the materials, creation and dissociation of excitons into electri-

cal charges, and drift-diffusion transport of the charge carriers,
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must be incorporated into the numerical simulator. Previously,

in several excellent works, the understanding of each mech-

anism and to interactions between different mechanisms was

considered [5–13]. The backbone of these models is the set of

transport equations: the continuity, Poisson and drift-diffusion

current equations (see equations (4)-(12) later). It must be noted

that the role that metal-organic (MO) interfaces play in OSCs

performance is embedded as boundary conditions for the so-

lution of this set of differential equations (DEs). The solution

of DEs depends on boundary conditions, although DEs them-

selves do not provide for the boundary conditions. Therefore,

boundary conditions for simulation of OSCs require special at-

tention. Actually, the aforementioned simulation studies differ

mainly in the choice of the boundary conditions for the electron

and hole concentrations at the interfaces.

The charge carrier density at the MO interface can be

governed by several physical-chemical mechanisms such as

thermionic emission, tunneling, reduction-oxidation (redox) re-

actions, trap-assisted recombination, and band bending due to

effects such as Fermi-level pinning or dipoles at the interface

that control the injection and extraction of charge [14, 15].

The combinations and proportions of these different effects and

mechanisms complicate the task of modeling MO interfaces.

Different models for the extraction and injection of charge have

been developed in order to find proper boundary conditions for

the free charge density or the electric field at the MO interface

[16–21]. In practice, approximations of these models are com-

monly used in order to reduce the high computational volumes

of numerical DE solvers.
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In OSC modeling and simulation, typical boundary condi-

tions at the material interfaces consider either constant charge

density, determined by Boltzmann statistics in thermionic emis-

sion over energy barriers [22, 23], or constant surface recom-

bination velocity at metal-organic interfaces, which inherently

implies a linear relation between the interface charge and the

current density. In particular, the linear relation of the elec-

tron, n (or hole, p) density with the current density J at con-

stant surface recombination velocity S is usually written as

n = −J/S + n0 (or p = −J/S + p0) [5, 24], where n, p are

the electron and hole densities at the interfaces and n0, p0 are

their respective values at equilibrium. These simple approxi-

mations (constant interface charge and constant surface recom-

bination velocity) provide easy means in the modeling of OSCs,

but the approximations are rarely used for consistency and al-

most never for accuracy.

Recently, we have proposed a more accurate relation between

the free charge density at the MO interfaces and the current den-

sity flowing through these interfaces. In general, the relation is

based on a power-law dependence between the charge and the

current. This model was initially proposed for single-carrier,

and then, for bipolar organic diodes in order to interpret their

current-voltage characteristics in dark [25, 26]. We have ob-

served that the free charge density at the injecting contact (for

example at x=0) of a single-carrier diode (n(0) = n(x = 0) or

p(0) = p(x = 0)) is related to the density of the following cur-

rent by a power-law function,

n(0)[, p(0)] = K1 Jm + K2 = [(J/JD)m + 1]K2, (1)

where m is a parameter that depends on the organic material,

K1 is a parameter related to the energy barrier at the injecting

contact and K2 is a parameter that models a flat region for the

charge density at the interface at low values of the current den-

sity. JD ≡ (K2/K1)1/m is the corner current density at which (1)

transits from a constant K2 to a power law function K1 Jm. In

diffusion-dominated transport, at bias close to the diode’s built-

in voltage, the charge density at the contact is almost a constant

independent of the current. The value of this charge is given

by the parameter K2. K2 also provides information about the

existence of thermal carriers, the doping of the semiconductor

or traps close to the interface [27, 28]. Later, we will show that

K2 elevates under illumination.

The power-law expression (1) incorporates the above men-

tioned Boltzmann and linear J − n (or J − p) approximations,

with m = 0 and m = 1, respectively. It also takes into account

possible recombination mechanisms at the interfaces through

m , 0 [26]. After experimental observations in OSCs, power-

law relations of the type J ∝ n2.6 were found between the dark

current density with the charge stored in the active layer of an

OSC, and between the total photogenerated current with the

charge stored at open circuit [29, 30]. This would agree with

our power-law expression (1). Overall, the power-law model

for the interface charge as a function of the current density is

very consistent with experimental data for J−VAC curves of or-

ganic diodes, including OSCs in dark [26] (VAC is the external

applied voltage). Using the extraction procedures developed in

these analyses, we will show later that the power-law model

remains valid when OSCs are under illumination, just K2 is dif-

ferent and higher under illumination.

In this work, we study the effect of the illumination on

the power-law model (1) for the charge-current dependence at

metal-organic interfaces of OSCs. We also assess the impact of

this interface effects on the J − VAC curves of the OSCs. The

objective is to find a proper model for the values of the free

charge carrier densities at the anode and cathode of OSCs that

can be used in simulators of these devices. Bearing this in mind,

Section 2 summarizes the optical and electrical models used for

the simulation of the active layer of OSCs [7, 31]. In Section

3, we adapt the boundary conditions at the metal-organic in-

terfaces to OSCs. In Section 4, numerical J − VAC curves are

simulated and comparisons with experimental data are given. A

procedure to extract the values of our model parameters is also

proposed along with these comparisons. In darkness, J − VAC

curves are analyzed both in forward and reverse regimes, cor-

responding to the injection from both contacts. In these situa-

tions, our previously developed model for single carrier diodes

is completely valid. Under illumination, the contact model for

OSCs is finally arranged considering previous experimental ob-

servations [29, 30] and suggestions for boundary conditions in

simulation [32]. In this definitive arrangement, the charge den-

sity at the interface increases when the intensity of the incident

light increases, following again the power-law function. The

main conclusions are provided in Section 5.

2. Electrical and optical models for the active layer of OSCs

A typical organic solar cell is a multilayer structure with a

metallic cathode of a low work function, an anode of a high

work function, an organic active layer where the absorbed light

generates photo-charge. OSC also has a substrate that sup-

ports the entire structure. The OSC active layer is composed

of two semiconductor compounds that allow for the separation

of photogenerated electron-hole pairs. An acceptor compound

(usually fullerene) collects and transports photogenerated elec-

trons. A donor compound (usually a polymer) collects and

transports photogenerated holes. These two compounds can

be separated by a well-defined interface, giving rise to the so-

called bilayer OSC, or can be blended together in the case of

the bulk-heterojunction (BHJ) solar cell. The latter BHJ OSC

achieves greater efficiencies than the former bi-layer OSC. For

this reason, the BHJ structure is analyzed in this work.

We use the effective medium approach in the simulation of

the active layer of the BHJ OSC, in which the active layer is

considered as a uniform material with an effective band gap EG

defined as the energy difference between the lowest unoccupied

molecular orbital (LUMO) of the acceptor material (LUMOacc)

and the highest occupied molecular orbital (HOMO) of the

donor layer (HOMOdonor). A simplified energy-level diagram

of a BHJ solar cell is shown in Fig. 1. The difference in

the work functions of the contacts creates an internal built-in

voltage Vbi that facilitates the transport of the photogenerated

charge carriers. The energy barriers that electrons and holes see

from the contacts towards the organic semiconductor are higher

in reverse operation of OSCs (when the applied voltage VAC is
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VAC < 0) than in forward operation (VAC > 0). This asymme-

try of contact work functions and barriers creates an asymmetry

in the current-voltage curves of OSCs between forward and re-

verse operations under dark condition.

Figure 1: Schematic energy diagram of a BHJ solar cell indicating the main

mechanisms that take place for the transformation of the sunlight in electrical

current (recombination processes are not shown).

Under illumination, the current-voltage characteristic of an

OSC is the result of simultaneously occurring optical and elec-

trical mechanisms (Fig. 1) of: (1) optical propagation and

photon absorption, (2) exciton (or bound electron-hole pair)

formation, (3) exciton migration, (4) exciton dissociation at a

donor/acceptor interface, (5) charge transport and bimolecular

recombination in the semiconductor and (6) charge extraction

at the metal-organic extracting contacts.

2.1. Optical models for the active layer of OSCs

The photocurrent density in an OSC is the flow of charge car-

riers generated in the active layer of the device, which depends

on the number of generated excitons. The number of excitons

varies with the optical power and the photon energy. The en-

ergy of the exciton is equal to the energy of the absorbed photon

hc/λ, where λ is the wavelength of the incident light. Thus, the

exciton can be seen as a non-electromagnetic carrier with en-

ergy hc/λ in the organic material. The propagation and absorp-

tion of photons in the layers of OSC is usually calculated by

the so-called Transfer Matrix Method (TMM) [8, 13, 33, 34].

In TMM, the photon energy and propagation are represented

by the electric field wave of the photon electromagnetic wave.

By considering absorption parameters and refractive indices of

materials, as well as the intensity spectrum of the incident light,

TMM determines the distribution Q(x, λ) of the absorbed light.

To dissociate an exciton into electron-hole pair, the exci-

ton energy must be large enough to bring a localized electron

from the HOMOdonor to the LUMOacc of the organic mate-

rial. Thus, only excitons that absorb photons with wavelength

λ < λmax ≈ hc/|LUMOacc − HOMOdonor | contribute to photo-

charge and photo-current on OSCs. Using λmax as an integra-

tion limit of the absorbed light distribution Q(x, λ) the spatial

distribution of excitons, termed as exciton generation rate, is

Gexciton(x) =
∫ λmax

0
Q(x, λ)/(hc/λ)dλ. TMM is especially useful

when the thickness of the OSC layers is below a critical value,

as optical interference can appear in the system, and one can

eventually maximize the absorbed light (and Gexciton, thereof)

in the active layer of the OSC.

2.2. Opto-Electrical Models for the active layer of OSCs

In a donor-acceptor blend, the photon is absorbed mainly in

the donor semiconductor, usually a polymer layer of high effi-

cient light absorption. Excitons diffuse through the donor ma-

terial until they reach a donor-acceptor interface, where the ex-

citon dissociates in an electron-hole pair (polaron), because the

electron is transferred from the exciton to the acceptor material,

while the hole remains in the donor material. Since separated

in different materials, the electron and hole can approach each

other by Brownian motion only up to a distance d, which is

not zero. They have a chance to recombine by back electron

transfer with a probability κ, or they are definitively dissociated

with a dissociation probability P. Hilczer and Tachiya extended

Onsager model of recombination [35] and calculated the disso-

ciation probability P = 1 − κ [36], where κ is given by Eqs.

(5)-(7) in [36].

As the time progresses, the electron-hole separation in sur-

viving pairs increases. In this case, recombination between

electron and holes coming from different pairs is more prob-

able. The kinetics of this bulk-recombination phase follows a

second order kinetics, where the recombination rate R is as-

sumed to be the bimolecular recombination rate [36–38]:

R = γ(np − n2
i ) (2)

where γ is the bulk rate constant. The bulk rate constant γ pro-

posed by Hilczer and Tachiya incorporates the fact that an elec-

tron and a hole recombine at a nonzero separation with a finite

intrinsic recombination rate and in the presence of an external

electric field (see Eqs. (14)-(16) in [36]). In the limit case of

zero separation, the expression of γ coincides with Langevin’s

result γ = q
(

µn + µp

)

/(ε0εr), where µn and µp are the electron

and hole mobilities, respectively, and ε0 and εr are the vacuum

and relative permittivity of the material, respectively [37].

Then, the net rate of generated free carriers U can be written

as

U = G − R = PGexciton − R (3)

where the charge generation rate is G = PGexciton.

2.3. Electrical models for the active layer of OSCs

Once the free electrons and holes are created in the active

layer of the OSC they must be transported towards their respec-

tive extracting contacts, in order an electrical current to flow.
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The electrical behavior of the OSC active layer is governed by

the drift-diffusion model, including also Poisson equation and

the continuity equations for electrons and holes. The Poisson

equation is

∂F/∂x = q (p − n + ND − NA) /(ε0εr) (4)

where q is the electron charge, F is the electric field, and ND

and NA are the concentrations of ionized donor and acceptor

impurities, respectively.

The continuity equations for electrons and holes are:

∂n

∂t
= +

1

q

∂Jn

∂x
+ U (5)

and

∂p

∂t
= −

1

q

∂Jp

∂x
+ U (6)

In this work, the organic solar cell is analyzed in steady-

state, neglecting transient behaviors. In this case, ∂n/∂t = 0

and ∂p/∂t = 0 in (5)-(6).

The electron and hole current densities, Jn and Jp, respec-

tively, are controlled by drift and diffusion,

Jn = qnµnF + qDn∂n/∂x (7)

Jp = qpµpF − qDp∂p/∂x (8)

Here, Dn and Dp are the diffusion coefficients for electrons and

holes. The diffusion coefficients are assumed to follow the Ein-

stein relation Dn,p/µn,p = VT = kBT/q where kB is the Boltz-

mann constant. In highly disordered systems or semiconduc-

tors with large values of the charge carrier density and traps,

this relation can be altered [39, 40]. Several authors propose

this relation to be Dn,p/µn,p = nVT , where n is an ideality fac-

tor which is induced from trap assisted recombination processes

[5, 39]. Other authors use a carrier-density dependent diffusion-

coefficient in the Einstein relation for the transport in Gaussian

or Exponential Density of State (DOS) systems [41, 42].

The set of transport equations is completed with the relation

between the electrostatic potential V and the electric field:

∂V/∂x = −F (9)

From (9), the difference of the electrostatic potential between

anode and cathode is

V(0) − V(L) =

∫ L

0

Fdx = VAC − Vbi (10)

where VAC = Vanode − Vcathode is the external applied voltage

between anode (x = 0) and cathode (x = L), L is the device

length, Vbi = (φA − φC)/q is the built-in voltage and φA and φC

are the work-functions of the metallic contacts of the anode and

cathode, respectively.

The total current density in OSCs is given by

J = Jn(x, t) + Jp(x, t) + ε0εr∂F(x, t)/∂t (11)

where the displacement current density Jd = ε0εr∂E(x, t)/∂t is

zero under the quasi-static assumption. Furthermore, since the

total current density is uniform in the device, then

∂J/∂x = ∂(Jn + Jp)/∂x = 0 (12)

The system of equations (4)-(12) has been used extensively

in the literature to model the transport in OSCs. However, there

are particular aspects that differ among different researchers,

such as the models used for the charge-carrier generation and

recombination, the mobility or the boundary values for the

charge carrier concentration, the last one being the main ob-

jective of this work.

Regarding the generation rate G, which accounts for the op-

tical illumination, this rate is usually assumed constant for sim-

plicity [43, 44]. In our case, the net rate of generated carri-

ers, eq. (3), in combination with TMM, follows Hilczer’s and

Tachiya’s model [36]. In darkness, excitons do not intervene

in the generation-recombination processes in the semiconduc-

tor, G = 0, and only bimolecular recombination appears in the

semiconductor.

The mobility can depend on variables such as the tempera-

ture, the electric field, the charge-carrier concentrations, or the

density of states of the organic materials [45–47]. Nevertheless,

there exist large ranges of these variables in which the mobility

can be assumed constant [48–50]. This assumption simplifies

the complex numerical treatments as the ones found in OPV

systems. In fact, the mobility in organic diodes, including OPV

devices, does not seem to vary much with bias, at low electric

fields and low injection of charge [45, 51]. For these reasons,

the mobility is assumed constant in this work. The third aspect

that also affects the solution of the transport equations (4)-(12)

is the selection of proper boundary conditions, which is the ob-

jective of our work and treated in the next section.

3. Boundary-condition model for OSCs

3.1. Boundary-condition model for OSCs in darkness

The boundary conditions at the OSC contacts represent

known values for some physical quantities at the edge of a spa-

tial mesh, in which the integration of the differential equations

is performed. At the contacts, the boundary conditions reflect

the physics of charge injection and extraction and must match

the biasing voltages. The boundary conditions must be chosen

to guarantee a self-consistent solution of the numerical model.

The basic one-dimension (1-D) semiconductor equations of the

OSC active layer (given in the previous section) are solved con-

sidering the origin x = 0 at the anode-semiconductor interface,

and the end of the device x = L at the cathode-semiconductor

interface. We need as many boundary conditions as the num-

ber of differential equations and physical variables is. There are

six independent differential equations in (4)-(12) and the same

number of physical unknown parameters (V , F, n, p, Jn and

Jp). Two of the boundary values correspond to the potential

at the contacts (anode- and cathode-organic interfaces). Zero

reference potential is set at the anode, and the potential at the

cathode comes from (10), that is
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V(x = 0) = 0 V

V(x = L) = −VAC + Vbi (13)

The other four boundary conditions are related to the values

of the free charge carrier densities at the anode and cathode

of the OSC. As mentioned in the introduction, simple approxi-

mations are commonly used in the literature: constant values of

the free carrier density, based on the Boltzmann approximation;

or constant values of the surface recombination velocity, which

account for the ability to transfer current between two regions

with different conductions, and determine the interface charge

density as a linear function of the current density J [5, 24].

More accurate models that relate the electric field at the metal-

organic interface with the current density can also be found,

although their major inconvenience is computational [16, 52],

owing to recursion between the transport equations for the OSC

active layer and not very simple expressions for the boundary

conditions.

A balance between simplicity and accuracy can be found in

previous studies we made in darkness in single-carrier and bipo-

lar organic diodes [26]. We observed that the free charge den-

sity at the injecting contact of single-carrier and bipolar diodes

is related to the current density following the power-law func-

tion (1). Fig. 2(a) captures the main conclusions of our previous

studies on bipolar organic diodes and their application to OSCs

in darkness [26]. It shows the evolution of the free charge den-

sity (electrons and holes) at the anode and cathode of an OSC

as a function of the current density. This figure points out the

following features:

• At forward bias, or positive current densities (J f ≡ J), the

anode injects holes and the cathode injects electrons, the

values of the hole density pA = p(0) at the anode and elec-

tron density nC = n(L) at the cathode follow (1). The sym-

bols n, p, A, C are related to electrons, holes, anode and

cathode, respectively. From experimental observations,

the extracted electron and holes densities at the injecting

electrodes of bipolar organic diodes are very similar [26].

For this reason, the values of pA and nC can be considered

the same: nC = pA = K2+K1Jm. Another reason to do this

is the meaning of the parameters in (1) [27, 28]: m depends

on the organic material, being the same for the OSC and

K1 is related to the energy barrier the charge carriers see

when injected towards the organic material. For an OSC

with Ohmic contacts, similar energy barriers for electrons

and holes are expected at the cathode and anode, respec-

tively. Thus, K1 is also expected to be the same for both.

The evolution of pA = nC is thus the following. At low

current densities, the carrier densities at the injecting con-

tacts are constant (pA = nC = K2). Once a threshold value

of the current density JD is surpassed, the charge density

evolves with the current density as K1 Jm.

• At forward bias (J f ≡ J), the values of the charge densities

at the extracting contacts (pC = p(L) and nA = n(0)) are

very small with almost no effect on the simulation results

Figure 2: (a) Model for the boundary values of the free charge densities at anode

and cathode in an OSC in darkness following the power-law function (14) and

Eq.(17). (b) The plateaus in the model elevate under illumination. (c) Typical

J − VAC curves of an OSC in dark (solid line) and under different illumination

intensities (dashed lines).

(nA = pC = K′
2
). A relation between pC and pA can be

established at low current densities by imposing the con-

dition J = 0 at zero applied voltage VAC = 0 V. In ana-

lytical J − VAC relations for organic diodes (see (A.4) in

[26]): pC ≈ pA × exp(−Vbi/VT ), which at low current den-

sities means K′
2
≈ K2 × exp(−Vbi/VT ), where K2 and K′

2

are the flat values of pA and pC , respectively (see (1) and

Fig. 2(a)).

• At reverse bias, or negative current densities (Jr ≡ −J), the

roles of the anode and cathode are changed, the anode in-

jects electrons and the cathode injects holes, the values of

the hole density pC = p(L) at the cathode and the electron

density nA = n(0) at the anode follow (1). For the same

reasons as in forward bias, nA and pC are considered the

same (nA = pC = K′
2
+ K′

1
Jm

r ). The only difference with

forward bias is that holes and electrons see a higher energy

barrier at their injecting contacts. The effect of these dif-

ferent energy barriers in forward or in reverse is reflected

in different values of the parameter K′
1
, K1. The value of

m in (1) is the same for positive and negative current den-

sities as it only depends on the properties of the organic

material [26–28].
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• At reverse bias (Jr ≡ −J), the values of the carrier densi-

ties at the extracting contacts, pA = p(0) and nC = n(L),

are constant values and, for consistency, equal to their

value in the flat region at J = 0.

The evolution of the charge densities in Fig. 2(a) shows sharp

transitions at the threshold values JD and J′
D

. This transition can

be softened in order to exactly interpret experimental current-

voltage characteristics of OSCs. In this regard, the parameter s

is introduced in the power law model (1),

pA = nC = K2

{

1 +

[

max

(

0,
J f

JD

)m]s}
1
s

(14)

where s = 1 for a smooth transition ((14) coincides with (1))

and s ≈ 10 for sharper transitions. In any case, the power-

law function is recovered at current densities larger than the

threshold current density JD

pA = nC ≃ K2

(

J f

JD

)m

= K1 Jm
f , J f ≫ JD (15)

with JD = (K2/K1)(1/m). The flat region is also reproduced with

(14) at current densities lower than the threshold voltage JD,

pA = nC ≃ K2, J f ≪ JD (16)

An identical relation to (14) can be written for the evolution of

pC = nA with J, using pC instead of pA, J′
D

instead of JD and

Jr = −J instead of J f = J,

pC = nA = K′2

{

1 +

[

max

(

0,
Jr

J′
D

)m]s}
1
s

(17)

where J′
D
= (K′

2
/K′

1
)1/m.

3.2. Boundary-condition model for OSCs under illumination

The model for the boundary values of the free charge density

at the anode and cathode of OSCs ((14) and (17) or Fig. 2(a))

reflects the main conclusions extracted from our previous works

in darkness [26–28]. This model is now adapted for OSCs un-

der illumination (Fig. 2(c)), incorporating ideas from other re-

searchers. In studies of light emitting diodes and photovoltaic

cells, Malliaras et al. proposed that the free charge densities

at the anode and cathode interfaces increase with the illumi-

nation [32]. Shuttle et al. measured the stored charge in the

active layer of OSCs in darkness and at open circuit voltage Voc

for different illumination intensities [29, 30]. They showed that

the charge density increases with Voc, and consequently with

the illumination intensity. They evaluated the current density

in darkness as a function of the charge density and the photo-

current as a function of the charge density at Voc. They obtained

the same evolution in both cases: J ∝ n2.6. This power-law re-

lation is very similar to our power-law function between the

current density and the charge density at the interfaces.

These authors’ conclusions under illumination are related to

the open circuit voltage region, or current density close to zero.

In this regard, we propose that the illumination increases the

value of the charge density at the contacts only in the low cur-

rent region (close to and below the open-circuit voltage). For

applied voltages greater than Voc, the current density is con-

trolled by drift mechanisms, and the diffusion and illumination

play a minor role. Thus, the relation pA − J under illumination

is expected to follow our power-law function (15) at high cur-

rent densities unaltered, as found in dark. With these ideas, the

charge density at the contacts under illumination intensity I can

be written as:

pA = nC = K2(I)

{

1 +

[

max

(

0,
J f

JD(I)

)m]s}
1
s

(18)

pC = nA = K′2(I)

{

1 +

[

max

(

0,
Jr

J′
D

(I)

)m]s}
1
s

where K2(I) = K2 + ∆K2(I), K′
2
(I) = K′

2
+ ∆K′

2
(I), ∆K2(I) and

∆K′
2
(I) are the densities of photogenerated carriers, JD(I) =

(K2(I)/K1)(1/m) and J′
D

(I) = (K′
2
(I)/K′

1
)(1/m). In darkness

K2(0) = K2 and K′
2
(0) = K′

2
. The evolution of the charge den-

sity at the contacts with illumination (18) is depicted in Fig.

2(b). Note that K1, K′
1
, m and s are not altered by the illumina-

tion.

The distribution of the photogenerated excitons inside the ac-

tive layer can be non-uniform according to the TMM results.

However, the values of the charge density at the extracting elec-

trodes are expected to be a little smaller than their values at the

opposite electrodes (pC � pA and nA � nC). In this regard, we

can assume pC = nA = K′
2
(I) ≤ K2(I), where K′

2
(I) is constant

for each value of I.

The model still requires evolutions of K2(I), JD(I) and K′
2
(I)

with the light intensity, bearing in mind important observations

made by Shuttle and collaborators after experimental studies on

OSCs [29]: the existence of similar relations between the stored

charge density in the active layer of the solar cell with the cur-

rent density in darkness and between the stored charge density

at Voc with the photo-current [29]; and that the stored charge

density at Voc is related to the photo-current by a power-law

function [29]. That means that the physical process at contacts

governing dark-current and photo-current is the same.

In order to model this similar behavior, we consider the set of

curves of Figs. 3(a) and (c). Figure 3(c) shows typical J − VAC

curves of an OSC under illumination. For an illumination in-

tensity I, the maximum value of the reverse current Jr is named

Jsat(I) = max[Jr(VAC , I)]. This maximum value corresponds

to the total photogenerated current, in which recombination

is negligible: Jsat(I) = q
∫ L

0
G(x, I))dx. We propose to relate

Jsat(I) with the free charge density at the interfaces with a simi-

lar expression to the ”J > 0” case (see (14)-(15) and Fig. 3(a)),

pA = nC = K2(I) = K2 + ∆K2(I)

= K2 + K1 [Jsat(I)]m (19)

At high illumination intensities, the total charge density can be

approximated by the net photogenerated charge density,

pA = nC = K2(I) ≃ ∆K2(I) = K1 [Jsat(I)]m (20)
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Figure 3: (a) and (b) Graphical representation of (21) for the boundary values

of the free charge density at the interfaces of an OSC under illumination (holes

at the anode and electrons at the cathode). The injected (right) and extracted

(left) charge densities follow a power-law function. Figure (a) represents a

similar injection and extraction of charge. Figure (b) shows a dissimilar case,

|JDr(I)| < |JD(I)|, studied in Section 4.3. (c) Typical current-voltage curves of

an OSC under illumination.

In a similar way, we might extend the relation (19) to any

other variable that produces changes in the value of the free

charge density, such as the temperature T : K2(T ) = K2(Tlow) +

K1(Jsat(T ))m, where Tlow is a reference value at low tempera-

tures. The idea that lies beneath our proposals is that the charge

density at a contact interface is the one which supports a fixed

current through it, no matter the direction and no matter what

the origin of the current is. In other words, the value of the cur-

rent density fixes the value of the charge density at the interface,

and vice versa.

The relations (19) and (20) are represented with dotted line

in Fig. 3(a). Introducing (19) and (20) in (18), the com-

plete model, including the similar behavior between the in-

jected charge in dark and the extracted charge under illumina-

tion, is:

pA = nC = K2(I)

{

1 +

[

max

(

J

JD(I)
,

J

JDr(I)

)m]s}
1
s

(21)

pC = nA = K′2(I) ≤ K2(I)

with JDr(I) = −JD(I) = −Jsat(I) < 0 to fulfill the similarity

condition, and K2(I) = K1 JD(I)m.

Equation (21) has three well defined regions. JD(I) is a

threshold value of the current density at which the charge densi-

ties start to increase over the flat value K2(I) at positive currents

(injection regime at forward bias)

pA = nC ≃ K2(I)

(

J f

JD(I)

)m

= K1 Jm
f , J ≫ JD(I) (22)

and JDr(I) is a threshold value of the current density at which

the charge densities start to increase over the flat value K2(I) at

negative currents (extraction regime at reverse bias)

pA = nC ≃ K2(I)

(

−Jr

JDr(I)

)m

≡ K1r Jm
r , J ≪ JDr(I) (23)

A flat region is found between JDr(I) and JD(I). In this flat

region, the value of the charge density at the interfaces depends

on the illumination

pA = nC ≃ K2(I), JDr(I) ≤ J ≤ JD(I). (24)

K1 = K2(I)/[JD(I)]m, K1r = K2(I)/[−JDr(I)]m and m are inde-

pendent of the illumination, and they describe the power-law

trend in the charge injection (22) and extraction (23) at elevat-

ing in magnitude bias (see the right and left high current regions

in Fig. 3(b)).

4. Parameter extraction and verification

4.1. Parameter extraction and verification - darkness

In order to validate the boundary-condition model for OSCs

in darkness [(14), (17) and Fig. 2(a)], current-voltage curves are

calculated with the set of differential equations (4)-(9). In order

to reproduce experimental current-voltage curves, the values of

the parameters µn, µp, Vbi, n, K1, K′
1
, m, and K2, are introduced

in these equations as follows.

In our calculation, we assume that the carrier mobility in the

organic materials is well described by constant values provided

in the literature. The nominal value of the built-in potential

Vbi is given by the difference of the work functions of the elec-

trodes. However, this value can be modified by different effects,

such as Fermi-level pinning, spontaneous orientation polariza-

tion or band-bending phenomena. There are light-irradiation

techniques to estimate Vbi [53, 54] or the method given by

Mantri et al. [55]. We follow this last method, in which an

initial value of Vbi is extracted from the transition voltage at

which the slope of the J − VAC curve changes from exponential

(diffusion regime) to power-law (space-charge-limited regime)

(point D in Fig. 4). The ideality factor of the Einstein relation n

is considered initially as n = 1. The values of Vbi and n can be

modified slightly during the extraction of the rest of the param-

eters related to our model for boundary charge at interfaces.

The extraction procedure depends on the existence or not of

parasitic leakage in the OSC, the second case being the most

frequent, as this leakage is difficult to avoid. A typical J − VAC

curve of an OSC without parasitic leakage in dark is shown

with dashed line in Fig. 4(a). The curve can be divided in three

regions (I)-(III) in which the above parameters can be extracted

in sequential steps. In each step, parameter values are varied
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until a good agreement is obtained between the simulation and

the experimental data.

The existence of a parasitic current, such as the one depicted

with dotted line in Fig. 4(a), is characterized typically with a

shunt resistance Rs and symmetric J − VAC behavior. Rs has

to be taken into account in the extraction procedure, because

the leakage current flowing through the shunt resistance Rs can

mask the low-current regime of the diode. Furthermore, by the

presence of Rs, another region IV also appears in the J − VAC

characteristic of OSCs, as shown in Fig. 4(b). Regions I and IV

are separated by the corner point E. This Fig. 4(b) corresponds

to a typical J − VAC curve of an OSC in dark with parasitic

leakage.

The sequence of steps needed to extract the parameters of

our boundary-charge model for an OSC in dark with parasitic

leakage is now detailed.

Step i (K2, K′
2
): Regions I and II in the forward bias (J f = J)

show exponential and power-law slopes, respectively, and are

separated by the corner point D (Vbi, JD). This corner provides

an estimation for the values of Vbi and JD. The parameter K2

is extracted by iteration comparing the experimental data in re-

gion I with numerical simulation, imposing boundary condi-

tions pA = nC = K2 and pC = nA = K′
2

in the numerical sim-

ulation, where K′
2
≈ K2 × exp(−Vbi/VT ) as mentioned in Sec.

2.3.

Step ii (Vbi, n, JD): The parameters Vbi and n (initially n = 1)

are varied until the calculated curve agrees with the experimen-

tal data in region I. After the fitting of region I, there will be a

difference between simulation and experimental data in region

II. This difference is greater for larger values of J f > JD. A

more precise value for JD can be defined at the point in which

the experimental and calculated curves differ 5% in value.

Step iii (m, K1): The parameters K1 and m are extracted from

region II, as they control the high-current regime at forward bias

VAC > Vbi. In this region, use pA = nC = K2+K1 Jm as boundary

charge conditions in the simulations, with K1 = K2/J
m
D

and

pC = nA = K′
2
, and vary m and K1 until the calculated curve

agrees also with the experimental one in region II.

Step iv (Rs): In this step, region IV is analyzed. Regions I

and IV are separated by the corner point E in Fig. 4(b). The

parasitic current component through the shunt resistance Rs is

calculated as JRs = VAC/(RsA), where A is the area of the OSC,

and compared to the experimental curve in the region IV, pro-

viding an initial value for Rs. Then, the parasitic JRs is added to

the current of the intrinsic OSC and compared to the complete

J−VAC curve in forward bias (regions I, II and IV). Several iter-

ations may be needed to refine the initial value of Rs and obtain

a good fitting in region IV.

Step v (K′
1
): In this step, the reverse bias region III (Jr = −J)

is analyzed. In the comparison between the experimental and

calculated curves, use pA = nC = K2 and pC = nA = K′
2
+

K′
1
Jm

r , where the only unknown parameter to be modified in the

fitting process is K′
1
. The rest of the parameters were extracted

in the previous steps, including Rs. The total current density in

reverse bias (including the parasitic current) is compared to the

experimental curve in this region III.

For validation of this procedure, we analyze experimental

Figure 4: (a) Typical current-voltage curve for an OSC in dark (dashed line)

divided into regions I-III in which the parameters of our boundary model (Fig.

2(a)) can be extracted in sequence; and typical parasitic current modeled with a

shunt resistance (dotted line). (b) Typical current-voltage curve for an OSC in

dark including the parasitic current. In this case, four regions are distinguished,

indicating the parameters of the model to be determined in each one.

J − VAC curves of a bulk heterojunction (BHJ) solar cell based

on the blend of poly(3-hexylethiophene) (P3HT) and phenyl

[6,6] C61 butyric acid methyl ester (PCBM) [56] and depicted

with gray circles in Fig. 5. The blend is sandwiched be-

tween two ohmic contacts, indium tin oxide (ITO) for holes,

and aluminum (Al) for electrons. The complete configura-

tion is ITO/poly(3,4-ethylenedioxythiophene):poly styrene sul-

fonate (PEDOT:PSS)/P3HT:PCBM/Al.

Figure 5 shows the comparison of these experimental data

with our numerical results (solid line). The J − VAC charac-

teristic shows clearly the four regions depicted in Fig. 4(b),

including the leakage-current region IV. The values of the free

charge-carrier density at the metal-organic interface used in the

numerical calculation are shown in Fig. 6. The exponent of

the power-law lines in this logarithmic graph is m = 0.35. The

rest of the parameters used in the calculation are Rs = 1.5 kΩ,

T=295 K, Vbi =0.55 V, µn = µp =10−4 cm2/Vs, n = 1.85,

εr = 3, area A = 0.1 cm2 and L = 150 nm. A very good agree-

ment is achieved between the experimental and the calculated

curves using our model in dark (14) and (17).

In order to show the effect of the leakage current, a curve

without the parasitic JRs of the shunt resistance is shown with

dotted line in Fig. 5. The fitting is accurate in regions I and II,

but not at low voltages (regions III and IV). It is important to

note that the high-current range in region III of reverse biasing
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Figure 5: Comparison of an experimental current-voltage curve measured at

room temperature in an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark

(symbols)[56] with our numerical results, including the effects of a shunt re-

sistance (solid line) and without these effects (dashed line). The values of the

free charge-carrier density at the metal-organic interface used in the numerical

calculation are represented in Fig. 6.

cannot be reproduced with the leakage current alone, justifying

that Step v was necessary in order to find a proper value for K′
1
.

4.2. Parameter extraction and verification - Under illumination

Now, the boundary condition model for illumination (21)

is tested with experimental J − VAC curves measured in an

OSC under different intensities of light. In the numerical sim-

ulation, we consider pA = nC = K2(I) from (19), in which

the experimental value of Jsat(I) is introduced and m, K1 and

K2 are known from the darkness analysis. We also consider

pC = nA = K′
2
(I) � K2(I), as was justified in the previous sec-

tion.

An example of validation of the model under illumination is

presented in Fig. 7. In this figure, we compare our numerical

results with experimental data measured in the same OSC ana-

lyzed in dark (Fig. 5) [56]. A perfect agreement is achieved by

introducing the boundary values for the electron and hole densi-

ties shown in Fig. 8 in the model of the OSC active layer in Sec.

2. The parameter K2(I), which controls the value of the charge

density at the extracting electrodes under illumination, follows

the power-law relation (19) with exponent m = 0.35. This re-

produces the same trend observed in darkness at high J (see

Fig. 8(a)). The values of the parameter K′
2
(I), which controls

the value of the charge density at the opposite electrodes un-

der illumination, are lower than the values of K2(I) (Fig. 8(b)).

We have found that their absolute difference is almost constant

K2(I) − K′
2
(I) ≃ 2.4 × 1015 cm−3, meaning that there is a corre-

lation between the boundary values of the charge density under

illumination in the two contacts. At high illumination intensi-

ties, the relative difference (K2(I)−K′
2
(I))/K2(I) decreases. The

rest of the parameters coincide with the ones used in darkness.

In order to check that the comparison between the experi-

mental data in Figs. 5 and 7 is not fortuitous, we compared our

numerical results with the value of the exponent of the power

Figure 6: Hole and electron densities at the anode and cathode as a function of

the current density, used in the numerical calculation to reproduce the experi-

mental data in Fig. 5. The evolution of pA = nC is described with: m = 0.35,

JD = 10−4 A/cm2 and K2 = 1.4 × 1015 cm−3. The evolution of pC = nA is

described with: m = 0.35, J′
D
= 10−8 A/cm2 and K′

2
= 3 × 1010 cm−3.

Figure 7: Comparison of experimental current-voltage curves measured at room

temperature for an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell under different

radiation intensity (symbols) [56] with our numerical results (solid lines). The

values of the free charge-carrier density at the metal-organic interface used in

the numerical calculation are presented in Fig. 8.

law extracted from this analysis (m = 0.35) with the value pro-

posed in Schuttle’s work [29]. They analyzed a similar structure

to the one studied in this work. They determined a relation be-

tween the stored photogenerated charge density in the bulk and

the current density of n ∝ J0.38. Our power-law model relates

the current density with the values of the free charge density at

the interfaces. The similarity between the exponent that con-

trols these relations (charge density vs. current density in the

bulk or at the interfaces) indicates continuity between bulk and

interface charge, and highlights the importance of the use of

proper boundary conditions in simulation.

4.3. Adaptation of the boundary condition model for OSCs with

non-ideal contacts

For an OSC with contacts in which the extraction under il-

lumination is similar to the injection in darkness, our boundary

condition model shows symmetry in the charge-current charac-

teristics that is, |JDr(I)| = |JD(I)| in Fig. 3(a). This similarity in

the model allows for the interpretation of the majority of J−VAC
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Figure 8: Hole and electron densities at the anode and cathode as a function

of the current density. They are used in our numerical procedure to reproduce

the experimental data in Fig. 7. (a) The evolution of pA = nC is described

with: m = 0.35, K1 = 3.5 × 1016 cm2m−3A−m, JD = 10−4 A/cm2, K2 =

1.4× 1015 cm−3, K2(80, 400, 800 W/cm2) = 2.9, 5.9, 7.2× 1015 cm−3. (b) The

evolution of pC = nA is described with: m = 0.35, K′
1
= 1.9×1013 cm2m−3A−m,

J′
D
= 10−8 A/cm2, K′

2
= 3 × 1010 cm−3, K′

2
(80, 400, 800 W/cm2) = 6 ×

1013 , 3.5 × 1015, 5.7 × 1015 cm−3.

curves of OSCs with conventional performance, as shown in the

preceding section.

In this last section, we analyze what would occur when this

similarity is broken and the extraction of charge under illumina-

tion follows a trend different from the trend for the injection of

charge. This dissimilar situation can be represented using (21)

with |JDr(I)| < JD(I) (see also Fig. 3(b)).

Figure 9 shows a study of the effect of the boundary val-

ues for the free charge density at the interfaces pA = nC and

pC = nA (Fig. 9(b)) on the J−VAC curves of OSCs under a fixed

illumination I0 (Fig. 9(a)). Four cases are considered: (i) con-

stant values for pA = nC , typical of ideal ohmic contacts using

Boltzmann conditions (JD(I0)→ ∞, JDr(I0)→ ∞); (ii) an OSC

with a similar behavior for the injection and extraction mecha-

nisms (JDr(I0) = −JD(I0) and K1r = K1); (iii) an OSC with a

dissimilar behavior for the injection and extraction mechanisms

(−JDr(I0) < JD(I0) and K1 > K1r); and (iv) an OSC with a

deeper dissimilar behavior (−JDr(I0) ≪ JD(I0) and K1 ≫ K1r).

The value of pC = nA is considered constant and uniform for the

four cases, fulfilling the condition pC = nA = K′
2
(I0) < K2(I0),

which is consistent with our observations of the previous sec-

tion, and K′
2
(I0) and K2(I0) are the values of the flat region of

pC = nA and pA = nC , respectively, when the currents through

OSCs are low in magnitude.

At J > 0 (VAC > Voc), the current density is controlled by the

injection of holes and electrons from the anode and cathode,

respectively. Their densities at these interfaces are depicted on

the right hand side of Fig. 9(b). Case (i) is the only that differs

from the rest (ii)-(iv). Case (i) corresponds to constant pA = nC

while cases (ii)-(iv) follow the power law at high J. Although

these differences in boundary conditions for charge seem to be

small, the differences in the J − VAC curve are large (Fig. 9(a)),

including a qualitative difference in behavior. The results in

Fig. 9 magnify the importance of the boundary conditions for

the charge in OSCs and confirm the robustness of our power-

law model to interpret the injection region of the current voltage

characteristics of OSCs (VAC ≥ Voc). Actually, the value of Voc

can also vary between the different cases of boundary charge in

OSCs, as seen in Fig. 9(a).

At J < 0, the current density in Fig. 9(a) is controlled by the

extraction of photogenerated carriers. Cases (i) and (ii) produce

the same typical response of an OSC, similar to that studied in

Fig. 7. Cases (iii) and (iv) show anomalous S-shape responses,

more pronounced in (iv).

These anomalous shapes have been interpreted in the past

with low values of the surface recombination velocity S in the

boundary relation J = −S (pA − p0) [24, 48], where pA is the

hole density at the anode and p0 its value at equilibrium (a sim-

ilar relation can be written for the extraction of electrons at the

cathode), or by the introduction of an insulator layer between

the metal and organic layers that hinders the flow of the cur-

rent.

The existence of unintentional doping introduced by oxygen,

the presence of traps and impurities or the poor quality of in-

terfacial layers can reduce the velocity at which the carriers are

extracted in an illuminated OSC [24, 48]. In these cases, the

accumulation of charge at the extracting electrode elevates, the

charge accumulation reduces the value of the photocurrent at

J < 0, and gives rise to anomalous S-shape curves.

Our boundary condition model as defined in (21) can also

reproduce these anomalous S-shapes. The accumulation of

charge at the extracting electrodes is taken into account with

a loss of symmetry between injection and extraction. This dis-

similar behavior is controlled in our model (21) with JDr(I) ,

−JD(I) and K1r , K1. The reduction of |JDr(I)| (or the eleva-

tion of K1r) make the extracted charge densities at the interfaces

(pA, nC) to increase.

The difference of behavior at J < 0 among these four curves

is explained by the different value of pA = nC , which is con-

trolled by the parameter JDr(I0) (Fig. 9(b)). Case (i) imposes no

limitation for the extracted charge with JDr(I0) → ∞. Case (ii)

does not impose limitation either, it corresponds to contacts that

show a similar increment of the injected and extracted charge

at high values of |J| because −JDr(I0) = JD(I0) = 1 mA/cm2,

and the value of |JDr(I0)| is too large to impose a constraint to

the extracted charge. Case (iii) with reduced JDr(I0) = −10−5

mA/cm2 and case (iv) with small JDr(I0) = −10−7 mA/cm2 con-

sider an accumulation of charge carriers at very low values of

the photocurrent density. After this simulation study, we con-
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clude that the anomalous S-shape curves can be explained by

means of a dissimilarity between the extraction and injection of

charge at an interface, due to reduced extraction threshold (low

|JDr |), which causes an increased accumulation of photogener-

ated charges at the extracting interface at low reverse currents -

see left-hand side of Fig. 9(b).

Figure 9: (a) Current-voltage curves of an OSC under a generic illumination

I0 generated with four different boundaries values for the free charge density

pA = nC and pC = nA (named (i)-(iv) in (b)). (b) (i) Ideal extracting contact

using Boltzmann conditions (JD(I0) → ∞, JDr(I0) → −∞); (ii) contacts with

a similar increment of the injected and extracted charge at high values of |J|

(|JDr (I0)| = JD(I0)); (iii)-(iv) contacts imposing limits to the extracted charge.

The common parameters used in the simulations are: T=295 K, Vbi =0.55 V,

µn = µp =10−4 cm2/Vs, εr = 3, L = 150 nm and s = 10. The specific

parameters are: (1) m = 0, K2(I0) = 1015 cm−3, K′
2
(I0) = 1014 cm−3; (2)

m = 0.7, K2(I0) = 1015 cm−3, −JDr(I0) = JD(I0) = 1 mA/cm2 and K′
2
(I0) =

1014 cm−3; (3) m = 0.7, K2(I0) = 1015 cm−3, JDr(I0) = −10−5 mA/cm2,

JD(I0) = 1 mA/cm2 and K′
2
(I0) = 1014 cm−3; (4) m = 0.7, K2(I0) = 1015 cm−3,

JDr(I0) = −10−7 mA/cm2, JD(I0) = 1 mA/cm2 and K′
2
(I0) = 1014 cm−3.

5. Conclusions

In this work, we have addressed the effect of the bound-

ary conditions for the charge density at contact interfaces in

the simulation of current-voltage curves of organic solar cells

(OSCs) in dark and under illumination. A model for the in-

terface free charge densities at the anode and cathode contacts

of OSC has been proposed. The model elaborates a previously

developed model for single-carrier and bipolar organic diodes

and it is built on experimental observations for OSCs published

in the literature. The model relates the free charge density at

the interfaces with the current density flowing through the OSC

by means of a power-law function. The power-law function

can describe both the injection of charge that occurs at voltages

greater than the open circuit voltage as well as the extraction

of photogenerated charges at voltages lower than the open cir-

cuit voltage. The model includes a set of parameters that take

into account the operating conditions and features of the con-

tacts in OSCs. Procedures for the extraction of model param-

eters are also provided. The model has been verified in dark-

ness and under illumination conditions by obtaining a perfect

agreement between our numerical results and experimental data

published by other authors. The model can also explain anoma-

lous S-shape current-voltage curves through a dissimilarity be-

tween injection and extraction. In these anomalous cases, the

extracted charge in reverse bias is accumulated at the contact

interfaces and hinders the flow of the current.
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