Boundary condition model for the simulation of organic solar cells
Metadatos
Mostrar el registro completo del ítemAutor
López Varo, Pilar; Jiménez Tejada, Juan Antonio; Marinov, Ognian; Carceller Beltrán, Juan Enrique; Chen, C.H.; Deen, JamalEditorial
Elsevier
Materia
Organic solar cells Modeling Boundary conditions for simulation Charge carrier density at interfaces
Fecha
2017Referencia bibliográfica
López Varo, P.; et al. Boundary condition model for the simulation of organic solar cells. Organic Electronics, 48: 85-95 (2017). [http://hdl.handle.net/10481/46656]
Patrocinador
This work was supported by Ministerio de Educación y Ciencia under research Grant FPU12/02712 and MINECO/FEDER under research Project MAT2016-76892-C3-3-R, and the Canada Research Chair program, NSERC ResEau strategic network and the NCE IC-IMPACTS.Resumen
Organic solar cells (OSCs) are promising photovoltaic devices to convert solar energy into electrical energy. Their many advantages such as lightweight, flexibility and low manufacturing costs are intrinsic to the organic/polymeric technology. However, because the performance of OSCs is still not competitive with inorganic solar cells, there is urgent need to improve the device performance using better designs, technologies and models. In this work, we focus on the developing an accurate physics-based model that relates the charge carrier density at the metal-organic boundaries with the current density in OSCs using our previous studies on single-carrier and bipolar diodes. The model for the boundary condition of the charge carrier density at the interfaces of OSCs follows a power-law function with the current density, both in dark and under illumination, and simulated current-voltage characteristics are verified with experimental results. The numerical simulations of the current-voltage characteristics of OSCs consider well-established models for the main physical and optical processes that take place in the device: light absorption and generation of excitons, dissociation of excitons into free charge carriers, charge transport, recombination and injection-extraction of free carriers. Our analysis provides important insights on the influence of the metal-organic interfaces on the overall performance of OSCs. The model is also used to explain the anomalous S-shape current-voltage curves found in some experimental data.