Mostrar el registro sencillo del ítem

dc.contributor.authorRajkumar, P.
dc.contributor.authorTanmai, G.
dc.contributor.authorAnkitha, K.
dc.contributor.authorSrilekha, M.
dc.date.accessioned2025-04-22T10:34:08Z
dc.date.available2025-04-22T10:34:08Z
dc.date.issued2024-12-31
dc.identifier.citationRajkumar P1, G. Tanmai2, K. Ankitha2, M. Srilekha2 (2024). Deepfake Detection on Social Media: Leveraging Deep Learning and Fast text Embeddings for Identifying Machine- Generated,Vol.15(5).277-285. ISSN 1989-9572. DOI:10.47750/jett.2024.15.05.27es_ES
dc.identifier.issn1989-9572
dc.identifier.urihttps://hdl.handle.net/10481/103725
dc.description.abstractDeepfake technology, which uses AI to create manipulated media, poses a significant threat to information integrity on social media platforms. In India, the rise of deepfake content has grown exponentially, especially in the political and entertainment domains, where fake news and AI-generated videos have gone viral, leading to misinformation. The primary objective is to develop a robust AI model that accurately detects deepfake content on social media platforms, focusing on identifying machine-generated tweets using FastText embeddings. Traditional methods involved human moderation, fact-checking agencies, and manual filtering of social media posts based on predefined rules and keyword matching. These methods were time-consuming and often inaccurate, lacking the scalability to manage the massive volume of online content. The manual detection of deepfakes and AI- generated content is highly inefficient, prone to errors, and incapable of handling the vast volume of social media data in real time. As a result, harmful and misleading information can spread widely before being identified or removed. With the growing influence of social media in shaping public opinion, the motivation behind this research is to combat misinformation and safeguard the integrity of online discourse. Particularly deep learning models can significantly improve the detection of deepfakes by automating the analysis of social media content. FastText embeddings will convert tweets into meaningful word vectors, while deep learning models can be applied to classify whether a tweet is human-generated or AI-generated. This approach offers real-time detection, improved accuracy, and scalability compared to traditional methods.es_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDeepfake Technologyes_ES
dc.subjectSocial media platformses_ES
dc.subjectFast Text embeddingses_ES
dc.subjectFact-Checking Agencieses_ES
dc.titleDeepfake Detection on Social Media: Leveraging Deep Learning and Fast text Embeddings for Identifying Machine-Generatedes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.47750/jett.2024.15.05.27
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional