Show simple item record

dc.contributor.authorSivakumaran, AR.
dc.contributor.authorMaheswari, Yetukuri Gouthami
dc.contributor.authorKalyani, Tangirala M N S
dc.contributor.authorRenusri, Telakapally
dc.date.accessioned2025-04-21T12:11:28Z
dc.date.available2025-04-21T12:11:28Z
dc.date.issued2024-12-01
dc.identifier.citationAR. Sivakumaran, Yetukuri Gouthami Maheswari, Tangirala M N S Kalyani, Telakapally Renusri (2024). Hybrid Deep Learning for Crime Anomaly Detection: Integrating CNN and LSTM for Predictive Analysis of Urban SafetyVol.15(5).346-354. DOI:10.47750/jett.2024.15.05.34es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103706
dc.description.abstractUrban safety has become a growing concern as crime rates rise, necessitating the development of effective systems for crime anomaly detection. Traditional crime monitoring systems often rely on manual observation, static surveillance mechanisms, or rule-based systems, which are limited in scalability, adaptability, and efficiency. Hybrid deep learning approaches, combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, offer a transformative solution for predictive analysis of urban safety. CNN excels at extracting spatial features from video footage and images, while LSTM processes temporal sequences, making this integration particularly suited for real-time anomaly detection.es_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Granadaes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectUrban safetyes_ES
dc.subjectCrime anomaly detectiones_ES
dc.subjectDeep learninges_ES
dc.subjectConvolutional Neural Networks (CNN)es_ES
dc.subjectLong Short-Term Memory (LSTM)es_ES
dc.subjectPredictive analysises_ES
dc.titleHybrid Deep Learning for Crime Anomaly Detection: Integrating CNN and LSTM for Predictive Analysis of Urban Safetyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.47750/jett.2024.15.05.34
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional