Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Franco, Manuel
dc.contributor.authorArenas Márquez, Francisco J.
dc.contributor.authorAlonso Dos Santos, Manuel 
dc.date.accessioned2025-01-20T07:51:41Z
dc.date.available2025-01-20T07:51:41Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/10481/99586
dc.description.abstractDespite growing levels of usage of Intelligent Personal Assistants (hereinafter, IPA), their in-home usage has not been studied in depth by scholars. To increase our understanding of user interactions with IPA, our research created a theoretical framework rooted in technology acceptance models and Uses and Gratification Theory. Our empirical method designs an ambitious analysis of natural and non-structured narratives (user-generated content) on Amazon’s Echo and Google Home. And to identify key aspects that differentially influence the evaluation of IPA our method employs machine-learning algorithms based on text summarisation, structural topic modelling and cluster analysis, sentiment analysis, and XGBoost regression, among other approaches. Our results reveal that (hedonic and utilitarian) benefits gratification, social influence and facilitating conditions have a direct impact on the users’ sentiment for IPA. To sum up, designers and managers should recognise the challenge of increasing the customer satisfaction of current and potential users by adjusting doubtful users’ technical skills and the (hedonic, cognitive, and social) benefits and functionalities of IPA to avoid boredom after a short lapse of time. Finally, the discussion section outlines future lines of research and theoretical and managerial implications.es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIntelligent personal assistantses_ES
dc.subjectTechnology acceptance modelses_ES
dc.subjectUses and Gratification theoryes_ES
dc.subjectText analyticses_ES
dc.subjectSentiment analysises_ES
dc.subjectStructural topic modeles_ES
dc.subjectXGBoost regressiones_ES
dc.titleUsing structural topic modelling to predict users’ sentiment towards intelligent personal agents. An application for Amazon’s echo and Google Homees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1016/j.jretconser.2021.102658
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional