Mostrar el registro sencillo del ítem

dc.contributor.authorCuadros Rodríguez, Luis 
dc.contributor.authorJiménez Carvelo, Ana María 
dc.contributor.authorGonzález Casado, Antonio 
dc.contributor.authorBagur González, María Gracia 
dc.date.accessioned2025-01-15T07:08:27Z
dc.date.available2025-01-15T07:08:27Z
dc.date.issued2019
dc.identifier.citationFood Res. Int. 2019, 122,25-39.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/99156
dc.description.abstractIn recent years, the variety and volume of data acquired by modern analytical instruments in order to conduct a better authentication of food has dramatically increased. Several pattern recognition tools have been developed to deal with the large volume and complexity of available trial data. The most widely used methods are principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), soft independent modelling by class analogy (SIMCA), k-nearest neighbours (kNN), parallel factor analysis (PARAFAC), and multivariate curve resolution-alternating least squares (MCR-ALS). Nevertheless, there are alternative data treatment methods, such as support vector machine (SVM), classification and regression tree (CART) and random forest (RF), that show a great potential and more advantages compared to conventional ones. In this paper, we explain the background of these methods and review and discuss the reported studies in which these three methods have been applied in the area of food quality and authenticity. In addition, we clarify the technical terminology used in this particular area of research.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleAlternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A reviewes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.foodres.2019.03.063
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional