• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning with imprecise probabilities as model selection and averaging

[PDF] modelselction2.pdf (233.5Kb)
Identificadores
URI: https://hdl.handle.net/10481/98686
DOI: https://doi.org/10.1016/j.ijar.2019.04.001
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Moral Callejón, Serafín
Editorial
Elsevier
Materia
Imprecise probability
 
Decision making
 
Model selection
 
Probability estimation
 
Likelihood
 
Credal networks
 
Date
2019-06
Referencia bibliográfica
International Journal of Approximate Reasoning Volume 109, June 2019, Pages 111-124
Sponsorship
Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (FEDER), under project TIN2016-77902-C3-2-P
Abstract
This paper presents a general framework for learning with imprecise probabilities, consisting of a hierarchical approach with two sets of parameters. In the top set we have imprecise information, and conditioned on this set we have precise Bayesian information about the other set of parameters. Given a set of observations, the information about both sets of parameters is updated by conditioning, and a model selection method is applied to compute a reduced top set. This model selection method is based on decisions with imprecise probabilities. It will be shown that many existing approaches can be fitted in this general procedure, and a theoretical justification will be provided. Finally, the method will be applied to the problem of learning credal networks.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback