Afficher la notice abrégée

dc.contributor.authorMoral Callejón, Serafín 
dc.date.accessioned2025-01-08T11:24:11Z
dc.date.available2025-01-08T11:24:11Z
dc.date.issued2019-06
dc.identifier.citationInternational Journal of Approximate Reasoning Volume 109, June 2019, Pages 111-124es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98686
dc.description.abstractThis paper presents a general framework for learning with imprecise probabilities, consisting of a hierarchical approach with two sets of parameters. In the top set we have imprecise information, and conditioned on this set we have precise Bayesian information about the other set of parameters. Given a set of observations, the information about both sets of parameters is updated by conditioning, and a model selection method is applied to compute a reduced top set. This model selection method is based on decisions with imprecise probabilities. It will be shown that many existing approaches can be fitted in this general procedure, and a theoretical justification will be provided. Finally, the method will be applied to the problem of learning credal networks.es_ES
dc.description.sponsorshipSpanish Ministry of Economy and Competitiveness and the European Regional Development Fund (FEDER), under project TIN2016-77902-C3-2-Pes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.subjectImprecise probabilityes_ES
dc.subjectDecision making es_ES
dc.subjectModel selectiones_ES
dc.subjectProbability estimationes_ES
dc.subjectLikelihoodes_ES
dc.subjectCredal networkses_ES
dc.titleLearning with imprecise probabilities as model selection and averaginges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.ijar.2019.04.001
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée