Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Iturriaga, Pablo 
dc.contributor.authorAlonso-del-Valle, Jorge
dc.contributor.authorRodríguez Bolívar, Salvador 
dc.contributor.authorAnseán, David
dc.contributor.authorViera, Juan Carlos
dc.contributor.authorLópez Villanueva, Juan Antonio 
dc.date.accessioned2024-12-19T08:06:31Z
dc.date.available2024-12-19T08:06:31Z
dc.date.issued2022
dc.identifier.citationJournal of Energy Storage 56 A :105810es_ES
dc.identifier.urihttps://hdl.handle.net/10481/98270
dc.description.abstractFractional-order models are gaining increasing relevance in battery modeling in light of the experimental measurements from Electrochemical Impedance Spectroscopy (EIS) tests, unequivocally indicating the presence of equivalent circuit components with an impedance of non-integer order. To attain their discrete state-space representation, the approach based on the Grünwald–Letnikov (GL) definition of the fractional derivative has been widely used, albeit its applicability beyond driving cycles remains open to discussion. In this article, we present a novel Dual Fractional-Order Extended Kalman Filter (DFOEKF) for the simultaneous estimation of State of Charge (SOC) and all fractional parameters, based on the multiple-RC approximation instead. We discuss the parameter identification of fractional-order elements on a NMC811/Si-Gr cell from both frequency and time-domain data, highlighting the importance of EIS measurements for the search of appropriate time-domain values. We validate the performance of this method experimentally at different operation stages, as well as its robustness to incorrect initializations, obtaining a SOC root-mean-square (RMS) error of 0.28% and a voltage RMS error of 15.2 mV in 20 complete charge–discharge cycles. The greatly accurate estimation results both within and outside the driving cycle stage make this method an interesting alternative for the fractional modeling of LIBs in online applications.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.titleA novel Dual Fractional-Order Extended Kalman Filter for the improved estimation of battery state of chargees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.est.2022.105810
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem