• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: GRIDE. Dispositivos Electrónicos (TIC105)
  • TIC105 - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: GRIDE. Dispositivos Electrónicos (TIC105)
  • TIC105 - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel Dual Fractional-Order Extended Kalman Filter for the improved estimation of battery state of charge

[PDF] Artículo principal (3.838Mb)
Identificadores
URI: https://hdl.handle.net/10481/98270
DOI: https://doi.org/10.1016/j.est.2022.105810
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Rodríguez Iturriaga, Pablo; Alonso-del-Valle, Jorge; Rodríguez Bolívar, Salvador; Anseán, David; Viera, Juan Carlos; López Villanueva, Juan Antonio
Editorial
Elsevier
Fecha
2022
Referencia bibliográfica
Journal of Energy Storage 56 A :105810
Resumen
Fractional-order models are gaining increasing relevance in battery modeling in light of the experimental measurements from Electrochemical Impedance Spectroscopy (EIS) tests, unequivocally indicating the presence of equivalent circuit components with an impedance of non-integer order. To attain their discrete state-space representation, the approach based on the Grünwald–Letnikov (GL) definition of the fractional derivative has been widely used, albeit its applicability beyond driving cycles remains open to discussion. In this article, we present a novel Dual Fractional-Order Extended Kalman Filter (DFOEKF) for the simultaneous estimation of State of Charge (SOC) and all fractional parameters, based on the multiple-RC approximation instead. We discuss the parameter identification of fractional-order elements on a NMC811/Si-Gr cell from both frequency and time-domain data, highlighting the importance of EIS measurements for the search of appropriate time-domain values. We validate the performance of this method experimentally at different operation stages, as well as its robustness to incorrect initializations, obtaining a SOC root-mean-square (RMS) error of 0.28% and a voltage RMS error of 15.2 mV in 20 complete charge–discharge cycles. The greatly accurate estimation results both within and outside the driving cycle stage make this method an interesting alternative for the fractional modeling of LIBs in online applications.
Colecciones
  • TIC105 - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias