• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: GRIDE. Dispositivos Electrónicos (TIC105)
  • TIC105 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: GRIDE. Dispositivos Electrónicos (TIC105)
  • TIC105 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel Dual Fractional-Order Extended Kalman Filter for the improved estimation of battery state of charge

[PDF] Artículo principal (3.838Mb)
Identificadores
URI: https://hdl.handle.net/10481/98270
DOI: https://doi.org/10.1016/j.est.2022.105810
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Rodríguez Iturriaga, Pablo; Alonso-del-Valle, Jorge; Rodríguez Bolívar, Salvador; Anseán, David; Viera, Juan Carlos; López Villanueva, Juan Antonio
Editorial
Elsevier
Date
2022
Referencia bibliográfica
Journal of Energy Storage 56 A :105810
Abstract
Fractional-order models are gaining increasing relevance in battery modeling in light of the experimental measurements from Electrochemical Impedance Spectroscopy (EIS) tests, unequivocally indicating the presence of equivalent circuit components with an impedance of non-integer order. To attain their discrete state-space representation, the approach based on the Grünwald–Letnikov (GL) definition of the fractional derivative has been widely used, albeit its applicability beyond driving cycles remains open to discussion. In this article, we present a novel Dual Fractional-Order Extended Kalman Filter (DFOEKF) for the simultaneous estimation of State of Charge (SOC) and all fractional parameters, based on the multiple-RC approximation instead. We discuss the parameter identification of fractional-order elements on a NMC811/Si-Gr cell from both frequency and time-domain data, highlighting the importance of EIS measurements for the search of appropriate time-domain values. We validate the performance of this method experimentally at different operation stages, as well as its robustness to incorrect initializations, obtaining a SOC root-mean-square (RMS) error of 0.28% and a voltage RMS error of 15.2 mV in 20 complete charge–discharge cycles. The greatly accurate estimation results both within and outside the driving cycle stage make this method an interesting alternative for the fractional modeling of LIBs in online applications.
Collections
  • TIC105 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback