(Almost isometric) local retracts in metric spaces
Metadatos
Mostrar el registro completo del ítemEditorial
Elsevier
Materia
Absolute local retracts Almost isometric local retracts Finitely injective
Fecha
2024-08-21Referencia bibliográfica
A. Quilis, A.RuedaZoca. 287 (2024) 110627. [https://doi.org/10.1016/j.jfa.2024.110627]
Patrocinador
MCIN/AEI/10.13039/501100011033: grant PID2021-122126NB-C31 (Rueda Zoca), grant PID2021-122126NB-C33 (Quilis); GACR Grant GA23-04776S, Czech Ministry of Youth and Sport project SGS23/056/OHK3/1T/13 and by the French ANR project No. ANR-20-CE40-0006; Junta de Andalucía: Grants FQM-0185 and PY20_00255; Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22; Generalitat Valenciana project CIGE/2022/97Resumen
We introduce the notion of (almost isometric) local retracts in metric space as a natural non-linear version of the concepts of ideals and almost isometric ideals in Banach spaces. We prove that given two metric spaces N⊆Mthere always exists an almost isometric local retract S⊆Mwith N⊆Sand dens(N) =dens(S). We also prove that metric spaces which are local retracts (respectively almost isometric local retracts) can be characterised in terms of a condition of extendability of Lipschitz functions (respectively almost isometries) between finite metric spaces. Various examples and counterexamples are exhibited.