Mostrar el registro sencillo del ítem

dc.contributor.authorQuilis, Andrés
dc.contributor.authorRueda Zoca, Abraham
dc.date.accessioned2024-09-12T07:19:00Z
dc.date.available2024-09-12T07:19:00Z
dc.date.issued2024-08-21
dc.identifier.citationA. Quilis, A.RuedaZoca. 287 (2024) 110627. [https://doi.org/10.1016/j.jfa.2024.110627]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/94370
dc.description.abstractWe introduce the notion of (almost isometric) local retracts in metric space as a natural non-linear version of the concepts of ideals and almost isometric ideals in Banach spaces. We prove that given two metric spaces N⊆Mthere always exists an almost isometric local retract S⊆Mwith N⊆Sand dens(N) =dens(S). We also prove that metric spaces which are local retracts (respectively almost isometric local retracts) can be characterised in terms of a condition of extendability of Lipschitz functions (respectively almost isometries) between finite metric spaces. Various examples and counterexamples are exhibited.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033: grant PID2021-122126NB-C31 (Rueda Zoca), grant PID2021-122126NB-C33 (Quilis)es_ES
dc.description.sponsorshipGACR Grant GA23-04776S, Czech Ministry of Youth and Sport project SGS23/056/OHK3/1T/13 and by the French ANR project No. ANR-20-CE40-0006es_ES
dc.description.sponsorshipJunta de Andalucía: Grants FQM-0185 and PY20_00255es_ES
dc.description.sponsorshipFundación Séneca: ACyT Región de Murcia grant 21955/PI/22es_ES
dc.description.sponsorshipGeneralitat Valenciana project CIGE/2022/97es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAbsolute local retractses_ES
dc.subjectAlmost isometric local retractses_ES
dc.subjectFinitely injectivees_ES
dc.title(Almost isometric) local retracts in metric spaceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jfa.2024.110627
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional