Afficher la notice abrégée

dc.contributor.authorRodríguez Barroso, Nuria
dc.contributor.authorMartínez Cámara, Eugenio 
dc.contributor.authorCamacho Collados, Jose
dc.contributor.authorLuzón, M. Victoria
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2024-07-31T09:45:31Z
dc.date.available2024-07-31T09:45:31Z
dc.date.issued2024-05-16
dc.identifier.citationRodríguez Barroso, N. et. al. vol. 12, pp. 630–648, 2024. [https://doi.org/10.1162/tacl_a_00664]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/93687
dc.description.abstractThe annotation of ambiguous or subjective NLP tasks is usually addressed by various annotators. In most datasets, these annotations are aggregated into a single ground truth. However, this omits divergent opinions of annotators, hence missing individual perspectives. We propose FLEAD (Federated Learning for Exploiting Annotators’ Disagreements), a methodology built upon federated learning to independently learn from the opinions of all the annotators, thereby leveraging all their underlying information without relying on a single ground truth. We conduct an extensive experimental study and analysis in diverse text classification tasks to show the contribution of our approach with respect to mainstream approaches based on majority voting and other recent methodologies that also learn from annotator disagreements.es_ES
dc.description.sponsorshipPID2020-119478GB-I00, PID2020-116118GA-I00, and TED2021-130145B-I00 funded by MCIN/ AEI/10.13039/50110001103es_ES
dc.description.sponsorshipDimosthenis Antypases_ES
dc.language.isoenges_ES
dc.publisherMIT Press Directes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleFederated Learning for Exploiting Annotators’ Disagreements in Natural Language Processinges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1162/tacl_a_00664
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional