• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Electrónica y Tecnología de Computadores
  • DETC - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Electrónica y Tecnología de Computadores
  • DETC - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smartphone-based and non-invasive sleep stage identification system with piezo-capacitive sensors

[PDF] Smartphone based sleep stage identifications.pdf (3.880Mb)
Identificadores
URI: https://hdl.handle.net/10481/92981
DOI: 10.1016/j.sna.2024.115659
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Pérez Ávila, Antonio Javier; Ruiz Herrera, Noelia; Martínez Olmos, Antonio; Carvajal Rodríguez, Miguel Ángel; Capitán Vallvey, Luis Fermín; López Ruiz, Nuria; Palma López, Alberto José
Editorial
Elsevier
Materia
Piezo-capacitive sensors
 
PVDF
 
Sleep monitoring
 
Smartphone
 
Machine learning
 
Fecha
2024-10-01
Referencia bibliográfica
A.J. Pérez-Ávila et al. Smartphone-based and non-invasive sleep stage identification system with piezo-capacitive sensors. Sensors & Actuators: A. Physical 376 (2024) 115659. https://doi.org/10.1016/j.sna.2024.115659
Patrocinador
Junta de Andalucía (Spain) PYC20-RE-040 UGR; MCIN/AEI/10.13039/501100011033/ PID2022–138727OB-I00; European Regional Development Funds “ERDF A way of making Europe”; University of Granada
Resumen
A non-invasive, wireless, smartphone-based electronic measurement system for sleep stage identification is presented in this work. Ballistocardiograph signals are collected by two piezo-capacitive thin film strips located on the mattress base. Suitable analog conditioning circuits and digital pre-processing techniques are applied to obtain the heart and breathing rates (HR, BR), and an activity index (ACT) related to the body movements during the sleep. An initial calibration stage is proposed where analog signal amplification is fitted to each subject, from which activity index is derived. Features considered for machine learning classifications were the mentioned data and the time variabilities of HR and BR represented by the features R(k) and B(k), respectively. Support Vector Machine (SVM) and K-Nearest-Neighbour (KNN) classifiers are employed in both flat and hierarchical classifi- cation scenarios for Wake – Non Rapid Eye Movement – Rapid Eye Movement (WAKE/NREM/REM) sleep stage identification. Twelve healthy subjects were recorded with the developed system using a polysomnograph (PSG) as reference data. When compared with PSG, the presented system achieved an average accuracy of 69 % using only three features: R(k), B(k), and ACT, highlighting an 88.2 % recall for NREM stage identification. These findings suggest that accounting only for time variability features and activity, satisfactory results can be pro- vided as a complementary alternative for sleep stage identification, with a smartphone-based electronic system designed as an affordable, versatile, and simple tool for household applications.
Colecciones
  • DETC - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias