• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Electrónica y Tecnología de Computadores
  • DETC - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Electrónica y Tecnología de Computadores
  • DETC - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smartphone-based and non-invasive sleep stage identification system with piezo-capacitive sensors

[PDF] Smartphone based sleep stage identifications.pdf (3.880Mo)
Identificadores
URI: https://hdl.handle.net/10481/92981
DOI: 10.1016/j.sna.2024.115659
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Pérez Ávila, Antonio Javier; Ruiz Herrera, Noelia; Martínez Olmos, Antonio; Carvajal Rodríguez, Miguel Ángel; Capitán Vallvey, Luis Fermín; López Ruiz, Nuria; Palma López, Alberto José
Editorial
Elsevier
Materia
Piezo-capacitive sensors
 
PVDF
 
Sleep monitoring
 
Smartphone
 
Machine learning
 
Date
2024-10-01
Referencia bibliográfica
A.J. Pérez-Ávila et al. Smartphone-based and non-invasive sleep stage identification system with piezo-capacitive sensors. Sensors & Actuators: A. Physical 376 (2024) 115659. https://doi.org/10.1016/j.sna.2024.115659
Patrocinador
Junta de Andalucía (Spain) PYC20-RE-040 UGR; MCIN/AEI/10.13039/501100011033/ PID2022–138727OB-I00; European Regional Development Funds “ERDF A way of making Europe”; University of Granada
Résumé
A non-invasive, wireless, smartphone-based electronic measurement system for sleep stage identification is presented in this work. Ballistocardiograph signals are collected by two piezo-capacitive thin film strips located on the mattress base. Suitable analog conditioning circuits and digital pre-processing techniques are applied to obtain the heart and breathing rates (HR, BR), and an activity index (ACT) related to the body movements during the sleep. An initial calibration stage is proposed where analog signal amplification is fitted to each subject, from which activity index is derived. Features considered for machine learning classifications were the mentioned data and the time variabilities of HR and BR represented by the features R(k) and B(k), respectively. Support Vector Machine (SVM) and K-Nearest-Neighbour (KNN) classifiers are employed in both flat and hierarchical classifi- cation scenarios for Wake – Non Rapid Eye Movement – Rapid Eye Movement (WAKE/NREM/REM) sleep stage identification. Twelve healthy subjects were recorded with the developed system using a polysomnograph (PSG) as reference data. When compared with PSG, the presented system achieved an average accuracy of 69 % using only three features: R(k), B(k), and ACT, highlighting an 88.2 % recall for NREM stage identification. These findings suggest that accounting only for time variability features and activity, satisfactory results can be pro- vided as a complementary alternative for sleep stage identification, with a smartphone-based electronic system designed as an affordable, versatile, and simple tool for household applications.
Colecciones
  • DETC - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire