Infinite dimensional spaces in the set of strongly norm-attaining Lipschitz maps
Metadatos
Mostrar el registro completo del ítemEditorial
EMS Press
Materia
Strong norm attainment Space of Lipschitz functions Linear subspaces
Fecha
2023-04-06Referencia bibliográfica
Avilés, Antonio, et al. Infinite dimensional spaces in the set of strongly norm-attaining Lipschitz maps. Rev. Mat. Iberoam. 40 (2024), no. 1, 189–200 DOI 10.4171/RMI/1425
Patrocinador
Fundación Séneca-ACyT Región de Murcia (20797/PI/18 and 21955/PI/22); MTM2017-86182-P (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”); MCIN/AEI/10.13039/501100011033 (Spain) Grant PID2021-122126NB-C32; MCIN/AEI/10.13039/501100011033 (Spain) Grant PGC2018-093794-B-I00 and PID2021-122126NB-C31; Junta de Andalucía Grants FQM-0185 and PY20_00255; Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) through grants PID2020-116398GB-I00; CEX2019-000904-S funded by MCIN/AEI/10.13039/501100011033Resumen
We prove that if M is an infinite complete metric space, then the set of
strongly norm-attaining Lipschitz functions SNA(M) contains a linear subspace isomorphic
to c0. This solves an open question posed by V. Kadets and Ó. Roldán.





