@misc{10481/92643, year = {2023}, month = {4}, url = {https://hdl.handle.net/10481/92643}, abstract = {We prove that if M is an infinite complete metric space, then the set of strongly norm-attaining Lipschitz functions SNA(M) contains a linear subspace isomorphic to c0. This solves an open question posed by V. Kadets and Ó. Roldán.}, organization = {Fundación Séneca-ACyT Región de Murcia (20797/PI/18 and 21955/PI/22)}, organization = {MTM2017-86182-P (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”)}, organization = {MCIN/AEI/10.13039/501100011033 (Spain) Grant PID2021-122126NB-C32}, organization = {MCIN/AEI/10.13039/501100011033 (Spain) Grant PGC2018-093794-B-I00 and PID2021-122126NB-C31}, organization = {Junta de Andalucía Grants FQM-0185 and PY20_00255}, organization = {Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) through grants PID2020-116398GB-I00}, organization = {CEX2019-000904-S funded by MCIN/AEI/10.13039/501100011033}, publisher = {EMS Press}, keywords = {Strong norm attainment}, keywords = {Space of Lipschitz functions}, keywords = {Linear subspaces}, title = {Infinite dimensional spaces in the set of strongly norm-attaining Lipschitz maps}, doi = {10.4171/RMI/1425}, author = {Avilés, Antonio and Martínez Cervantes, Gonzalo and Rueda Zoca, Abraham and Tradacete, Pedro}, }