Mostrar el registro sencillo del ítem

dc.contributor.authorKanwal, Neel
dc.contributor.authorLópez Pérez, Miguel 
dc.contributor.authorKiraz, Umay
dc.contributor.authorZuiverloon, Tahlita C. M.
dc.contributor.authorMolina Soriano, Rafael 
dc.contributor.authorEngan, Kjersti
dc.date.accessioned2024-06-13T06:43:47Z
dc.date.available2024-06-13T06:43:47Z
dc.date.issued2023-12-20
dc.identifier.citationKanwal, Neel, et al. Are you sure it’s an artifact? Artifact detection and uncertainty quantification in histological images. Computerized Medical Imaging and Graphics 112 (2024) 102321 [10.1016/j.compmedimag.2023.102321]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/92546
dc.description.abstractModern cancer diagnostics involves extracting tissue specimens from suspicious areas and conducting histotechnical procedures to prepare a digitized glass slide, called Whole Slide Image (WSI), for further examination. These procedures frequently introduce different types of artifacts in the obtained WSI, and histological artifacts might influence Computational Pathology (CPATH) systems further down to a diagnostic pipeline if not excluded or handled. Deep Convolutional Neural Networks (DCNNs) have achieved promising results for the detection of some WSI artifacts, however, they do not incorporate uncertainty in their predictions. This paper proposes an uncertainty-aware Deep Kernel Learning (DKL) model to detect blurry areas and folded tissues, two types of artifacts that can appear in WSIs. The proposed probabilistic model combines a CNN feature extractor and a sparse Gaussian Processes (GPs) classifier, which improves the performance of current state-of-the-art artifact detection DCNNs and provides uncertainty estimates. We achieved 0.996 and 0.938 F1 scores for blur and folded tissue detection on unseen data, respectively. In extensive experiments, we validated the DKL model on unseen data from external independent cohorts with different staining and tissue types, where it outperformed DCNNs. Interestingly, the DKL model is more confident in the correct predictions and less in the wrong ones. The proposed DKL model can be integrated into the preprocessing pipeline of CPATH systems to provide reliable predictions and possibly serve as a quality control tool.es_ES
dc.description.sponsorshipFondo Europeo de Desarrollo Regional (FEDER)/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades, under Grant B-TIC-324-UGR20es_ES
dc.description.sponsorshipProject PID2022-140189OBC22 funded by MCIN/AEI /10.13039/501100011033 and FEDERes_ES
dc.description.sponsorshipCLARIFY is the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska Curie grant agreement No 860627es_ES
dc.description.sponsorshipUniversity of Granada postdoctoral program ‘‘Contrato Puente’’es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtifact detectiones_ES
dc.subjectComputational pathologyes_ES
dc.subjectDeep learninges_ES
dc.titleAre you sure it’s an artifact? Artifact detection and uncertainty quantification in histological imageses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.compmedimag.2023.102321
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional