Afficher la notice abrégée

dc.contributor.authorMoral García, Serafín 
dc.contributor.authorGarcía Castellano, Francisco Javier 
dc.contributor.authorMantas Ruiz, Carlos Javier 
dc.contributor.authorAbellán Mulero, Joaquín 
dc.date.accessioned2024-02-07T10:10:10Z
dc.date.available2024-02-07T10:10:10Z
dc.date.issued2022-02-15
dc.identifier.citationMoral-García, S., Castellano, J. G., Mantas, C. J., & Abellán, J. (2022). Using extreme prior probabilities on the Naive Credal Classifier. Knowledge-Based Systems, 107707. Knowledge-Based Systems. Doi: 10.1016/j.knosys.2021.107707es_ES
dc.identifier.issn1872-7409
dc.identifier.urihttps://hdl.handle.net/10481/88529
dc.description.abstractThe Naive Credal Classifier (NCC) was the first method proposed for Imprecise Classification. It starts from the known Naive Bayes algorithm (NB), which assumes that the attributes are independent given the class variable. Despite this unrealistic assumption, NB and NCC have been successfully used in practical applications. In this work, we propose a new version of NCC, called Extreme Prior Naive Credal Classifier (EP-NCC). Unlike NCC, EP-NCC takes into consideration the lower and upper prior probabilities of the class variable in the estimation of the lower and upper conditional probabilities. We demonstrate that, with our proposed EP-NCC, the predictions are more informative than with NCC without increasing the risk of making erroneous predictions. An experimental analysis carried out in this work shows that EP-NCC significantly outperforms NCC and obtains statistically equivalent results to the algorithm proposed so far for Imprecise Classification based on decision trees, even though EP-NCC is computationally simpler. Therefore, EP-NCC is more suitable to be applied to large datasets for Imprecise Classification than the methods proposed so far in this field. This is an important issue in favor of our proposal due to the increasing amount of data in every area.es_ES
dc.description.sponsorshipThis work has been supported by UGR-FEDER funds under Project A-TIC-344-UGR20, by the “FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades ” under Project P20_00159, and by research scholarship FPU17/02685.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.subjectImprecise classificationes_ES
dc.subjectNaive Credal Classifieres_ES
dc.subjectExtreme Prior Naive Credal Classifieres_ES
dc.subjectLower and upper prior probabilitieses_ES
dc.subjectNon-dominated states setes_ES
dc.titleUsing extreme prior probabilities on the Naive Credal Classifieres_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1016/j.knosys.2021.107707
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée