• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using extreme prior probabilities on the Naive Credal Classifier

[PDF] Artículo versión aceptada. (420.4Kb)
Identificadores
URI: https://hdl.handle.net/10481/88529
DOI: 10.1016/j.knosys.2021.107707
ISSN: 1872-7409
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Moral García, Serafín; García Castellano, Francisco Javier; Mantas Ruiz, Carlos Javier; Abellán Mulero, Joaquín
Editorial
Elsevier
Materia
Imprecise classification
 
Naive Credal Classifier
 
Extreme Prior Naive Credal Classifier
 
Lower and upper prior probabilities
 
Non-dominated states set
 
Fecha
2022-02-15
Referencia bibliográfica
Moral-García, S., Castellano, J. G., Mantas, C. J., & Abellán, J. (2022). Using extreme prior probabilities on the Naive Credal Classifier. Knowledge-Based Systems, 107707. Knowledge-Based Systems. Doi: 10.1016/j.knosys.2021.107707
Patrocinador
This work has been supported by UGR-FEDER funds under Project A-TIC-344-UGR20, by the “FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades ” under Project P20_00159, and by research scholarship FPU17/02685.
Resumen
The Naive Credal Classifier (NCC) was the first method proposed for Imprecise Classification. It starts from the known Naive Bayes algorithm (NB), which assumes that the attributes are independent given the class variable. Despite this unrealistic assumption, NB and NCC have been successfully used in practical applications. In this work, we propose a new version of NCC, called Extreme Prior Naive Credal Classifier (EP-NCC). Unlike NCC, EP-NCC takes into consideration the lower and upper prior probabilities of the class variable in the estimation of the lower and upper conditional probabilities. We demonstrate that, with our proposed EP-NCC, the predictions are more informative than with NCC without increasing the risk of making erroneous predictions. An experimental analysis carried out in this work shows that EP-NCC significantly outperforms NCC and obtains statistically equivalent results to the algorithm proposed so far for Imprecise Classification based on decision trees, even though EP-NCC is computationally simpler. Therefore, EP-NCC is more suitable to be applied to large datasets for Imprecise Classification than the methods proposed so far in this field. This is an important issue in favor of our proposal due to the increasing amount of data in every area.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias