• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Lenguajes y Sistemas Informáticos
  • DLSI - Capítulos de Libros
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Lenguajes y Sistemas Informáticos
  • DLSI - Capítulos de Libros
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clustering Study of Vehicle Behaviors Using License Plate Recognition

[PDF] Artículo principal.pdf (513.9Kb)
Identificadores
URI: https://hdl.handle.net/10481/87226
DOI: https://doi.org/10.1007/978-3-031-21333-5_77
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Bolaños Martinez, Daniel; Bermúdez Edo, María del Campo; Garrido Bullejos, José Luis
Editorial
Springer International Publishing
Materia
IoE
 
AI
 
sensors
 
clustering
 
smart environments
 
Fecha
2022-11-21
Referencia bibliográfica
Bolaños-Martinez, D., Bermudez-Edo, M., Garrido, J.L. (2023). Clustering Study of Vehicle Behaviors Using License Plate Recognition. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_77
Patrocinador
LifeWatch ERIC
Resumen
Ubiquitous computing and artificial intelligence contribute to deploying intelligent environments. Sensor networks in cities generate large amounts of data that can be analyzed to provide relevant information in different fields, such as traffic control. We propose an analysis of vehicular behavior based on license plate recognition (LPR) in a rural region of three small villages. The contribution is twofold. First, we extend an existing taxonomy of the most widely used clustering algorithms in machine learning with additional classes. Second, we compare the performance of algorithms from each class of the taxonomy, extracting behavioral patterns. Partitional and hierarchical algorithms obtain the best results, while density-based algorithms have poor results. The results show four differentiated patterns in vehicular behavior, distinguishing different patterns in both residents and tourists. Our work can help policymakers develop strategies to improve services in rural villages, and developers choose the correct algorithm for a similar study.
Colecciones
  • DLSI - Capítulos de Libros

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias