• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying inter-hemispheric differences in Parkinson’s Disease using siamese networks

[PDF] Quantifying inter-hemispheric.pdf (385.9Kb)
Identificadores
URI: https://hdl.handle.net/10481/85907
DOI: 10.1007/978-3-031-06242-1_16
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Arco Martín, Juan Eloy; Ortiz García, Andrés; Castillo Barnes, Diego; Gorriz Sáez, Juan Manuel; Ramírez Pérez De Inestrosa, Javier
Fecha
2022
Referencia bibliográfica
Published version: Arco, J.E., Ortiz, A., Castillo-Barnes, D., Górriz, J.M., Ramírez, J. (2022). Quantifying Inter-hemispheric Differences in Parkinson’s Disease Using Siamese Networks. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. [https://doi.org/10.1007/978-3-031-06242-1_16]
Resumen
Classification of medical imaging is one of the most popular application of intelligent systems. A crucial step is to find the features that are relevant for the subsequent classification. One possibility is to compute features derived from the morphology of the target region in order to check its role in the pathology under study. It is also possible to extract relevant features to evaluate the similarity between different regions, in addition to compute morphology-related measures. However, it can be much more useful to model the differences between regions. In this paper, we propose a method based on the principles of siamese neural networks to extract informative features from differences between two brain regions. The output of this network generates a latent space that characterizes differences between the two hemispheres. This output vector is then fed into a linear SVM classifier. The usefulness of this method has been assessed with images from the Parkinson’s Progression Markers Initiative, demonstrating that differences between the dopaminergic regions of both hemispheres lead to a high performance when classifying controls vs Parkinson’s disease patients.
Colecciones
  • DTSTC - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias