• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying inter-hemispheric differences in Parkinson’s Disease using siamese networks

[PDF] Quantifying inter-hemispheric.pdf (385.9Ko)
Identificadores
URI: https://hdl.handle.net/10481/85907
DOI: 10.1007/978-3-031-06242-1_16
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Arco Martín, Juan Eloy; Ortiz García, Andrés; Castillo Barnes, Diego; Gorriz Sáez, Juan Manuel; Ramírez Pérez De Inestrosa, Javier
Date
2022
Referencia bibliográfica
Published version: Arco, J.E., Ortiz, A., Castillo-Barnes, D., Górriz, J.M., Ramírez, J. (2022). Quantifying Inter-hemispheric Differences in Parkinson’s Disease Using Siamese Networks. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. [https://doi.org/10.1007/978-3-031-06242-1_16]
Résumé
Classification of medical imaging is one of the most popular application of intelligent systems. A crucial step is to find the features that are relevant for the subsequent classification. One possibility is to compute features derived from the morphology of the target region in order to check its role in the pathology under study. It is also possible to extract relevant features to evaluate the similarity between different regions, in addition to compute morphology-related measures. However, it can be much more useful to model the differences between regions. In this paper, we propose a method based on the principles of siamese neural networks to extract informative features from differences between two brain regions. The output of this network generates a latent space that characterizes differences between the two hemispheres. This output vector is then fed into a linear SVM classifier. The usefulness of this method has been assessed with images from the Parkinson’s Progression Markers Initiative, demonstrating that differences between the dopaminergic regions of both hemispheres lead to a high performance when classifying controls vs Parkinson’s disease patients.
Colecciones
  • DTSTC - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire