Show simple item record

dc.contributor.authorMeeks III, William H.
dc.contributor.authorPérez Muñoz, Joaquín 
dc.date.accessioned2023-09-19T08:17:45Z
dc.date.available2023-09-19T08:17:45Z
dc.date.issued2023-07-26
dc.identifier.citationMeeks III, William H. and Pérez, Joaquín. "Hierarchy structures in finite index CMC surfaces" Advances in Calculus of Variations, 2023. [https://doi.org/10.1515/acv-2022-0113]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84492
dc.descriptionWilliam H. Meeks, III was partially supported by CNPq, Brazil, grant no. 400966/2014-0. Research of both authors was partially supported by MINECO/MICINN/FEDER grant nos. PID2020-117868GB-I00 and CEX2020-001105-M, both funded by MCINN/AEI, and by regional grant no. P18-FR-4049 funded by Junta de Andalucia.es_ES
dc.description.abstractGiven epsilon(0) > 0, I is an element of N boolean OR {0} and K 0, H 0 >= 0, let X be a complete Riemannian 3-manifold with injectivity radius Inj(X) = e 0 and with the supremum of absolute sectional curvature at most K-0, and let M (sic) X be a complete immersed surface of constant mean curvature H is an element of [ 0, H-0] with index at most I. For such M (sic) X, we prove a structure theorem which describes how the interesting ambient geometry of the immersion is organized locally around at most I points of M, where the norm of the second fundamental form takes on large local maximum values.es_ES
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 400966/2014-0es_ES
dc.description.sponsorshipMINECO/MICINN/FEDER: PID2020-117868GB-I00, CEX2020-001105-Mes_ES
dc.description.sponsorshipMCINN/AEIes_ES
dc.description.sponsorshipJunta de Andalucía P18-FR-4049es_ES
dc.language.isoenges_ES
dc.publisherWalter de Gruyter GmbHes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectConstant mean curvaturees_ES
dc.subjectFinite index H-surfaceses_ES
dc.subjectArea estimates for constant mean curvature surfaceses_ES
dc.subjectCurvature estimates for one-sided stable minimal surfaceses_ES
dc.titleHierarchy structures in finite index CMC surfaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1515/acv-2022-0113
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional