dc.contributor.author | Meeks III, William H. | |
dc.contributor.author | Pérez Muñoz, Joaquín | |
dc.date.accessioned | 2023-09-19T08:17:45Z | |
dc.date.available | 2023-09-19T08:17:45Z | |
dc.date.issued | 2023-07-26 | |
dc.identifier.citation | Meeks III, William H. and Pérez, Joaquín. "Hierarchy structures in finite index CMC surfaces" Advances in Calculus of Variations, 2023. [https://doi.org/10.1515/acv-2022-0113] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/84492 | |
dc.description | William H. Meeks, III was partially supported by CNPq, Brazil, grant no. 400966/2014-0. Research of both authors was partially supported by MINECO/MICINN/FEDER grant nos. PID2020-117868GB-I00 and CEX2020-001105-M, both funded by MCINN/AEI, and by regional grant no. P18-FR-4049 funded by Junta de Andalucia. | es_ES |
dc.description.abstract | Given epsilon(0) > 0, I is an element of N boolean OR {0} and K 0, H 0 >= 0, let X be a complete Riemannian 3-manifold with injectivity radius Inj(X) = e 0 and with the supremum of absolute sectional curvature at most K-0, and let M (sic) X be a complete immersed surface of constant mean curvature H is an element of [ 0, H-0] with index at most I. For such M (sic) X, we prove a structure theorem which describes how the interesting ambient geometry of the immersion is organized locally around at most I points of M, where the norm of the second fundamental form takes on large local maximum values. | es_ES |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)
400966/2014-0 | es_ES |
dc.description.sponsorship | MINECO/MICINN/FEDER:
PID2020-117868GB-I00,
CEX2020-001105-M | es_ES |
dc.description.sponsorship | MCINN/AEI | es_ES |
dc.description.sponsorship | Junta de Andalucía P18-FR-4049 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Walter de Gruyter GmbH | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Constant mean curvature | es_ES |
dc.subject | Finite index H-surfaces | es_ES |
dc.subject | Area estimates for constant mean curvature surfaces | es_ES |
dc.subject | Curvature estimates for one-sided stable minimal surfaces | es_ES |
dc.title | Hierarchy structures in finite index CMC surfaces | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1515/acv-2022-0113 | |
dc.type.hasVersion | VoR | es_ES |