Hierarchy structures in finite index CMC surfaces
Metadatos
Mostrar el registro completo del ítemEditorial
Walter de Gruyter GmbH
Materia
Constant mean curvature Finite index H-surfaces Area estimates for constant mean curvature surfaces Curvature estimates for one-sided stable minimal surfaces
Fecha
2023-07-26Referencia bibliográfica
Meeks III, William H. and Pérez, Joaquín. "Hierarchy structures in finite index CMC surfaces" Advances in Calculus of Variations, 2023. [https://doi.org/10.1515/acv-2022-0113]
Patrocinador
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 400966/2014-0; MINECO/MICINN/FEDER: PID2020-117868GB-I00, CEX2020-001105-M; MCINN/AEI; Junta de Andalucía P18-FR-4049Resumen
Given epsilon(0) > 0, I is an element of N boolean OR {0} and K 0, H 0 >= 0, let X be a complete Riemannian 3-manifold with injectivity radius Inj(X) = e 0 and with the supremum of absolute sectional curvature at most K-0, and let M (sic) X be a complete immersed surface of constant mean curvature H is an element of [ 0, H-0] with index at most I. For such M (sic) X, we prove a structure theorem which describes how the interesting ambient geometry of the immersion is organized locally around at most I points of M, where the norm of the second fundamental form takes on large local maximum values.