Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Iturriaga, Pablo 
dc.contributor.authorRodríguez Bolívar, Salvador 
dc.contributor.authorLópez Villanueva, Juan Antonio 
dc.date.accessioned2023-09-13T11:30:33Z
dc.date.available2023-09-13T11:30:33Z
dc.date.issued2023-08-01
dc.identifier.citationP. Rodríguez-Iturriaga et al. A physics-based fractional-order equivalent circuit model for time and frequency-domain applications in lithium-ion batteries. Journal of Energy Storage 64 (2023) 107150. [https://doi.org/10.1016/j.est.2023.107150]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/84398
dc.descriptionThis work was partially supported by the Regional Government of Andalusia under project P18-RT-3303 from Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), by the Spanish Ministry of Science and Innovation and by FEDER funds via Project MCI-20-PID2019-110955RB-I00, by the Principality of Asturias via project AYUD/2021/50994, and by the FPU-UGR-Banco Santander Program for Predoctoral Scholarships. Funding for open access charge: Universidad de Granada / CBUAes_ES
dc.description.abstractEquivalent circuit models (ECMs) remain the most popular choice for online applications in lithium-ion batteries because of their simpler parameterization and lower computational requirements in comparison to electrochemical models. Nevertheless, standard ECMs lack physical insight and fail to accurately reproduce cell behavior under a wide range of operating conditions. For this reason, the development of physics-informed ECMs becomes essential so as to provide a better description of the physical processes while maintaining a reduced computational complexity. In this article, we propose a novel physics-based ECM derived directly from an electrochemical model, so that there is a clear correlation between circuit states and internal battery states, as well as circuit and physical parameters. The proposed model yields an RMS error below 1.46 mV for cell voltage, 0.28% for the surface concentration in the active material particles, 0.6% for the electrode-averaged electrolyte concentration and 0.32 mV for the charge-transfer overpotentials. Another key feature of this model is the relationship between circuit parameters and those identified in frequency-domain tests, which allows us to characterize and validate the model experimentally. We understand that the presented model constitutes an alternative to standard ECMs as well as electrochemical models as it combines advantageous characteristics from both of them.es_ES
dc.description.sponsorshipRegional Government of Andalusia P18-RT-3303es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovationes_ES
dc.description.sponsorshipFEDER: MCI-20-PID2019-110955RB-I00es_ES
dc.description.sponsorshipPrincipality of Asturias AYUD/2021/50994es_ES
dc.description.sponsorshipPU-UGR-Banco Santanderes_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLithium-ion batteryes_ES
dc.subjectEquivalent-circuit modeles_ES
dc.subjectFractional-order modeles_ES
dc.subjectPhysics-based modeles_ES
dc.subjectEISes_ES
dc.titleA physics-based fractional-order equivalent circuit model for time and frequency-domain applications in lithium-ion batterieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1016/j.est.2023.107150
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional