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A B S T R A C T

Equivalent circuit models (ECMs) remain the most popular choice for online applications in lithium-ion
batteries because of their simpler parameterization and lower computational requirements in comparison to
electrochemical models. Nevertheless, standard ECMs lack physical insight and fail to accurately reproduce cell
behavior under a wide range of operating conditions. For this reason, the development of physics-informed
ECMs becomes essential so as to provide a better description of the physical processes while maintaining a
reduced computational complexity. In this article, we propose a novel physics-based ECM derived directly from
an electrochemical model, so that there is a clear correlation between circuit states and internal battery states,
as well as circuit and physical parameters. The proposed model yields an RMS error below 1.46 mV for cell
voltage, 0.28% for the surface concentration in the active material particles, 0.6% for the electrode-averaged
electrolyte concentration and 0.32 mV for the charge-transfer overpotentials. Another key feature of this model
is the relationship between circuit parameters and those identified in frequency-domain tests, which allows us
to characterize and validate the model experimentally. We understand that the presented model constitutes an
alternative to standard ECMs as well as electrochemical models as it combines advantageous characteristics
from both of them.
1. Introduction

As concerns over energy supply and environmental issues grow
larger worldwide, electrochemical energy storage has become a subject
of intense research. In particular, rechargeable lithium-ion batteries
have materialized as the leading storage solution for a number of
applications [1–3], due to their high energy density, high specific
energy, and low self-discharge [4]. Therefore, the development of
comprehensive battery models is critical for their online monitoring
by a Battery Management System (BMS) [5], thus ensuring their safe
operation as well as a prolonged useful lifespan by accurately esti-
mating internal battery states [6]. Three broad groups are commonly
considered in the field of battery modeling: physics-based models,
equivalent circuit models (ECMs) and data-driven models [4,7]. In
data-driven approaches the battery is substituted by a black-box model
that is able to reproduce its behavior. Nevertheless, the validity of the
resulting model relies heavily on the training dataset. This may lead to
practical drawbacks, such as a considerably time-consuming training
process or overfitting issues [7]. Consequently, electrochemical and
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equivalent circuit models continue to be of great research interest, and
we will focus on them in this study.

Physics-based approaches model the physical processes and elec-
trochemical reactions that occur in the cell, with the Doyle–Fuller–
Newman (DFN) [8,9] being considered the standard battery model.
Due to its complex nature, several approximations have been proposed
so as to maintain the description of the physical processes with a
restrained computational load [10], with the Single Particle Model
(SPM) [11,12] being one of the most widely used. The SPM makes
the assumptions that each electrode is composed of spherical active
material particles with the same physical properties and that electrolyte
dynamics are negligible [13], so the current distribution is uniform
across the electrode. Consequently, only one representative particle
from each electrode needs to be taken into account. This approxi-
mation holds true for low current rates [14]; however, at moderate
and large currents the effects of concentration and potential gradi-
ents in the electrolyte should be accounted for. Therefore, several
approaches have been proposed to include electrolyte dynamics with
the goal of extending the range of applicability of the SPM [14–18],
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usually by the names ‘enhanced SPM’ (eSPM) or ‘SPM with electrolyte
(SPMe)’, via polynomial approximations of the electrolyte concentra-
tion profile [15,16,18] or the numerical resolution of the corresponding
PDE [14,17,18], with the former approach being less suitable for pulsed
currents [19]. There also exist some alternatives to the direct numerical
resolution of the PDEs, in which the transfer functions of the system
are obtained from electrochemical models and then transformed into a
discrete state-space representation with the Discrete-Time Realization
Algorithm (DTRA) [20] or into a SIMULINK [21] model via simplified
fractional-order transfer functions [22–24]. Nevertheless, these models
still require a precise set of physical parameters, whose determination
from non-invasive experimental measurements continues to be an open
research topic [25].

On the other hand, ECMs approximate the electrical behavior of a
battery cell by that of a specific circuit. This approach is characterized
by reduced memory requirements and a low computational load, there-
fore making them appropriate for online BMSs [26–29]. Moreover, their
discrete state-space representation is easily obtained, thus allowing for
the implementation of state observers and Kalman filters [30–32] to
mitigate the influence of measurement and process noise. The challenge
is twofold when developing ECMs: first, determining which circuit
topology reproduces battery behavior more accurately, and secondly,
obtaining the corresponding parameter values for said topology from
experimental tests [33–35]. Most ECMs include a voltage source, which
corresponds to the open-circuit voltage (OCV) as a nonlinear function
of the cell state of charge (SOC), in series with the internal ohmic
resistance and one or several parallel RC elements that model dynamic
behavior [30]. A variation, useful for circuit simulators, substitutes
the independent OCV source by a voltage source dependent on the
state of charge of a capacitor which represents battery SOC [36]. How-
ever, these models introduce a strong separation between quasi-static
electrode thermodynamics included in the OCV-SOC relationship [37]
and the dynamic behavior represented by the RC network, in which
different diffusion processes are mixed and a direct equivalence with
the internal states of the battery is not often possible. Additionally,
physics-based models show that electrode potential is dependent on the
lithium concentration at the surface of active material particles rather
than their average concentration, which is what SOC stands for. The
difference between both magnitudes may be considerably large at high
current rates, as predicted by the SPM [38]. Li et al. [39] recently
proposed a modification to the model by Chen and Rincon-Mora [36]
by which the non-linear voltage source depends on an intermediate
variable named 𝑆𝑂𝐶𝑠𝑢𝑟𝑓 , which is obtained as the result of the series
connection of the SOC capacitor and a RC-element that represents
the non-uniform concentration profile due to lithium diffusion in the
active material particles. Nevertheless, the relationship between circuit
parameters and their physical counterparts is generally lost, which
makes these models inaccurate outside the range in which they have
been determined experimentally.

For these reasons, several works combine an equivalent circuit
model for electrolyte dynamics and ohmic losses with the transfer
functions for solid diffusion in physics-informed reduced order mod-
els [40–43]. These works make use of Padé’s method in order to
obtain rational approximations to these transcendental transfer func-
tions. However, it has to be pointed out that Padé’s approximants
are calculated in the neighborhood of a certain point, typically the
frequency 𝑠 = 0, so the accuracy of the approximation is not guaranteed
within the whole frequency range. Furthermore, it has been shown
that diffusion processes are more accurately modeled by a continuous
distribution of time constants [44], therefore suggesting that fractional-
order transfer functions are more appropriate in this context. This is
also corroborated by Electrochemical Impedance Spectroscopy (EIS)
tests [6,44–47]. The Nyquist plot of EIS data shows several depressed
semicircles and constant-slope tails that may be modeled electrically
2

by Constant-Phase Elements (CPEs) [48] and ZARC elements [49],
which are the parallel connection of a resistor and a CPE. The in-
troduction of fractional-order circuit elements entails the computation
of fractional-order derivatives, so several approaches have been pro-
posed in the literature for approximating their behavior in the time
domain [49–53]. Moreover, fractional-order ECMs have been employed
successfully in conjunction with Kalman filters in recent years [54–56]
for the concurrent estimation of battery state of charge and electrical
parameters.

For all the reasons above, the development of a physics-based ECM,
which is able to provide information about internal battery states and
whose circuit parameters are directly correlated with physical param-
eters, is an open research topic. Furthermore, we also consider the
relationship between the time-domain and frequency-domain behaviors
of lithium-ion batteries to be a subject of interest. Therefore, in this
article we derive a novel reduced fractional-order ECM from an elec-
trochemical model, whose states and parameters are related to those
of the battery cell. Additionally, we have analyzed the correspondence
between said circuit parameters and those identified from EIS measure-
ments, thus clarifying the connection between frequency-domain data
and physical parameters. For this purpose, we have obtained simplified
transfer functions from the SPMe and determined their electrical equiv-
alent with fractional-order elements. Subsequently, the proposed model
has been validated first against the SPMe for given a parameter set, and
next with experimental data by identifying equivalent circuit parame-
ters from EIS measurements. The major advantage of this model over
previous ECMs is the extended insight into the internal battery states
and physical processes, whereas it groups physical parameters in resis-
tors and time constants and presents lower computational requirements
with respect to the SPMe, thus allowing for a simpler parameterization
process as well as the implementation of online estimation algorithms.

The main contributions of this article are condensed as follows:

1. Deriving reduced transfer functions directly from the SPMe and
establishing their electrical equivalent via ZARC elements, as
well as the criteria for the validity of the employed approxima-
tions.

2. Constructing an equivalent circuit model whose parameter val-
ues are directly correlated with their physical counterparts, and
whose states contain information about the internal states of the
battery cell.

3. Providing a method to determine said equivalent circuit param-
eters from EIS data, thus bridging the gap between the time and
frequency-domain behaviors of lithium-ion batteries.

In consequence, this paper is structured as follows: the analytical
derivation of the proposed equivalent circuit model is presented in
Section 2. The theoretical validation against an electrochemical model
is carried out in Section 3, whereas the experimental parameterization
process and results are detailed and discussed in Section 4. Some final
remarks are provided in the last section.

2. Equivalent circuit development

In this section, the procedure to obtain simplified transfer functions
from the SPMe and their electrical equivalence is described with the
goal of developing an equivalent circuit model. The main advantage
of employing the SPMe instead of the DFN as in [20] lies in the fact
that the former removes the coupling between the partial differential
equations. Therefore, each diffusion process may be analyzed inde-
pendently, thus producing considerably simpler transfer functions and

allowing for a direct electrical equivalence.
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2.1. SPMe model description

Marquis et al. [14] proposed an SPMe derived as an asymptotic
reduction of the standard DFN model, which expresses battery terminal
voltage as a function of electrode-averaged quantities. In said model,
the output voltage is split into the sum of its components as in Eq. (1):

𝑉 = 𝑈𝑒𝑞 + 𝜂𝑐 + 𝜂𝑟 + 𝛥𝛷𝑒 + 𝛥𝛷𝑠 (1)

where the term 𝑈𝑒𝑞 stands for the equilibrium potential, 𝜂𝑐 and 𝜂𝑟 repre-
sent the voltage drop due to concentration gradients in the electrolyte
and charge-transfer reactions, respectively, and 𝛥𝛷𝑒 and 𝛥𝛷𝑠 are the
ohmic losses in the electrolyte and solid, respectively. The detailed
expression for each term is shown in Eq. (2):

𝑈𝑒𝑞 = 𝑂𝐶𝑃𝑝(𝜒𝑝|𝑟=𝑅𝑝
) − 𝑂𝐶𝑃𝑛(𝜒𝑛|𝑟=𝑅𝑛

) (2a)

𝜂𝑐 =
2𝑅𝑇
𝐹

(1 − 𝑡+)
𝑐𝑒,𝑡𝑦𝑝

(

𝑐𝑒,𝑝 − 𝑐𝑒,𝑛
)

(2b)

𝜂𝑟 =
2𝑅𝑇
𝐹

[

sinh−1
( 𝐼𝑅𝑝

6𝑗0,𝑝𝜖𝑝𝐿𝑝𝐴

)

+ sinh−1
(

𝐼𝑅𝑛
6𝑗0,𝑛𝜖𝑛𝐿𝑛𝐴

)]

(2c)

𝛥𝛷𝑒 =
𝐼
𝜅𝐴

(

𝐿𝑛

3𝜖𝑏𝑒,𝑛
+

𝐿𝑠

𝜖𝑏𝑒,𝑠
+

𝐿𝑝

3𝜖𝑏𝑒,𝑝

)

(2d)

𝛥𝛷𝑠 =
𝐼
3𝐴

(

𝐿𝑛
𝜎𝑛

+
𝐿𝑝

𝜎𝑝

)

(2e)

here 𝑂𝐶𝑃𝑝 and 𝑂𝐶𝑃𝑛 are the open-circuit potentials for the posi-
ive and negative electrodes, respectively. 𝜒𝑝|𝑟=𝑅𝑝

and 𝜒𝑛|𝑟=𝑅𝑛
are the

ormalized lithium concentrations in the positive and negative active
aterial particles, respectively, evaluated at their surface, with 𝑅𝑝 and
𝑛 being their respective particle radius. Regarding the electrolyte, 𝑡+ is

he cation transference number, 𝜅 represents the electrode conductivity
nd 𝑐𝑒,𝑝 and 𝑐𝑒,𝑛 are the electrode-averaged electrolyte concentrations

in the positive and negative electrode, respectively. 𝑗0,𝑝, 𝑗0,𝑛, 𝜎𝑝, 𝜎𝑛 𝜖𝑝
and 𝜖𝑛 are the exchange current densities, conductivities and active
material volume fractions for both electrodes. 𝐿𝑛, 𝐿𝑠, 𝐿𝑝, 𝜖𝑒,𝑝, 𝜖𝑒,𝑠 and
𝜖𝑒,𝑛 represent the thickness and porosities of the positive electrode,
separator and negative electrode, respectively. Lastly, 𝐴 stands for the
electrode area, 𝑏 is the Bruggeman coefficient and 𝐼 is the current
applied to the cell. Note that we have changed the current sign criterion
to positive while charging in order to obtain impedance expressions
with a positive real part.

The terms that depend directly on solid or electrolyte concentrations
(i.e., 𝑈𝑒𝑞 and 𝜂𝑐) are those that will exhibit a time-domain transient or
a frequency response, therefore they will be analyzed in Sections 2.2
and 2.3. The term 𝜂𝑟 depends on said concentrations indirectly, so
it will be studied subsequently in Section 2.4. The equivalent circuit
model along with its discrete state-space representation is presented
in Section 2.5 and its correspondence with frequency-domain data is
analyzed in Section 2.6.

2.2. Solid diffusion transfer function

To obtain the frequency response of the 𝑈𝑒𝑞 term in Eq. (2), the
evaluation of the lithium concentration at the surface of the solid
particles of the electrodes is necessary. If the particles are assumed to
be spherical, the diffusion process taking place within them is described
by Eq. (3) [14]:
𝜕𝑐𝑠(𝑟, 𝑡)

𝜕𝑡
=

𝐷𝑠

𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐𝑠(𝑟, 𝑡)

𝜕𝑟

)

(3)

ith the following boundary conditions [14]:
𝜕𝑐𝑠(𝑟, 𝑡)

𝜕𝑟
|

|

|

|𝑟=0
= 0,

𝜕𝑐𝑠(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟=𝑅𝑠

=
𝐼𝑅𝑠

3𝐴𝐹𝐿𝑒𝐷𝑠𝜖𝑠
(4)

where 𝑟 is the distance along the particle radius, 𝑐𝑠 is the lithium
concentration in the solid, 𝐷 is the lithium diffusion coefficient in the
3

𝑠

solid, 𝑅𝑠 is the particle radius, 𝐴 is the electrode area, 𝐹 is Faraday’s
constant and 𝐿𝑒 is the electrode length. The variation in concentration
with respect to the initial value is taken as the equation variable, so as
to have zero initial time conditions:

𝑐𝑠 = 𝑐𝑠 − 𝑐𝑠,0 (5)

Upon solving, applying the boundary conditions in Eq. (4) and
evaluating at 𝑟 = 𝑅𝑠, the transfer function from the applied current
to the variation in surface concentration is obtained in Eq. (6):
𝑐𝑠,𝑠(𝑠)
𝐼(𝑠)

=
𝜏𝑠

3𝜖𝑠𝐴𝐹𝐿𝑒

1
√

𝜏𝑠𝑠 coth
(

√

𝜏𝑠𝑠
)

− 1
(6)

where 𝜏𝑠 is defined as 𝑅2
𝑠

𝐷𝑠
. If normalized concentration is considered

instead, the transfer function may be rewritten as in Eq. (7):

𝐺𝑠(𝑠) =
𝜒𝑠,𝑠(𝑠)
𝐼(𝑠)

=
𝐾𝑠

√

𝜏𝑠𝑠 coth
(

√

𝜏𝑠𝑠
)

− 1
(7)

where 𝜒𝑠,𝑠 = 𝑐𝑠,𝑠(𝑠)∕𝑐𝑠,𝑚𝑎𝑥 and 𝐾𝑠 =
𝜏𝑠

3𝜖𝑠𝐴𝐹𝐿𝑒𝑐𝑠,𝑚𝑎𝑥
.

Taking into account that for small values of 𝑥,
√

𝑥 coth
(

√

𝑥
)

≈

+ 𝑥
3 − 𝑥2

45 , one can study the behavior of 𝐺𝑠(𝑠) in the limits 𝑠 → 0
nd 𝑠 → ∞ as in Eq. (8):

𝑠(𝑠) ≈

⎧

⎪

⎨

⎪

⎩

3𝐾𝑠
𝜏𝑠𝑠

+ 𝐾𝑠
5 , 𝑠 → 0

0, 𝑠 → ∞
(8)

In order to approximate the frequency response of 𝐺𝑠(𝑠) between
hese two limits, in this article we propose a transfer function composed
f the addition of an integrator and a ZARC element as expressed in
q. (9):

𝐾𝑠
√

𝜏𝑠𝑠 coth
(

√

𝜏𝑠𝑠
)

− 1
≈

3𝐾𝑠
𝜏𝑠𝑠

+
𝐾𝑠∕5

1 +
(

𝛽𝑠𝜏𝑠𝑠
)𝛼𝑠

(9)

Therefore, 𝛼𝑠 and 𝛽𝑆 need to be determined so as to obtain the
closest approximation to 𝐺𝑠(𝑠). For this purpose, the frequency response
f both transfer functions is plotted in a Nyquist diagram and the
eighted impedance error between the exact and the approximate

ransfer function is minimized within a range of frequencies. In this
ase, we have considered the interval 𝜔 =

[

1
𝜏𝑠
, 10

3

𝜏𝑠

]

due to the fact
that at frequencies lower than 2𝜋

𝜏𝑠
the integrator behavior is dominant,

hereas at frequencies higher than 2𝜋⋅103
𝜏𝑠

the amplitude of the fre-

quency response approaches 0. The resulting values are 𝛼𝑠 = 0.82 and
𝛽𝑠 = 0.0207, and the Nyquist plot of the frequency response of both
transfer functions is shown in Fig. 1.

Note that Eq. (9) is expressed in terms of the normalized frequency
𝜏𝑠𝑠, so this approximation remains valid regardless of the specific
physical parameter values. Furthermore, the fact that the identified
order exponent is not equal to 1 proves that a parallel-RC element
would not be the most appropriate alternative for approximating the
original transfer function.

Particularizing for the negative and positive particle, the term 𝑈𝑒𝑞
rom Eq. (2a) may be expressed as in Eq. (10), taking into account
hat the boundary condition for the positive particle is negative if the
urrent applied to the cell 𝐼(𝑠) is considered positive while charging:

𝑈𝑒𝑞(𝑠) = 𝑂𝐶𝑃𝑝

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

−
3𝐾𝑝

𝜏𝑝𝑠
−

𝐾𝑝∕5

1 +
(

0.0207𝜏𝑝𝑠
)0.82

⎤

⎥

⎥

⎦

𝐼(𝑠)
⎞

⎟

⎟

⎠

−

𝑂𝐶𝑃𝑛

([

3𝐾𝑛
𝜏𝑛𝑠

+
𝐾𝑛∕5

1 +
(

0.0207𝜏𝑛𝑠
)0.82

]

𝐼(𝑠)

)

(10)

where 𝜏 =
𝑅2
𝑝 , 𝜏 = 𝑅2

𝑛 , 𝐾 = 𝜏𝑝 and 𝐾 = 𝜏𝑛 .
𝑝 𝐷𝑝
𝑛 𝐷𝑛

𝑝 3𝜖𝑝𝐴𝐹𝐿𝑝𝑐𝑝,𝑚𝑎𝑥 𝑛 3𝜖𝑛𝐴𝐹𝐿𝑛𝑐𝑛,𝑚𝑎𝑥
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Fig. 1. Nyquist plot of the frequency response of the exact and approximate normalized
transfer functions in Eq. (9) for solid diffusion. Note that the real and imaginary axes
have different scales.

2.3. Electrolyte diffusion transfer function

Next, the frequency response of the 𝜂𝑐 term in Eq. (2) must be
determined in order to calculate the overpotential due to concentra-
tion gradients in the electrolyte. Consequently, the electrode-averaged
lithium concentration in the electrolyte has to be evaluated. For this
purpose, the diffusion process described in Eq. (11) is analyzed [14]:

𝜖𝑒,𝑛
𝜕𝑐𝑒,𝑛(𝑥, 𝑡)

𝜕𝑡
= 𝜖𝑏𝑒,𝑛𝐷𝑒

𝜕2𝑐𝑒,𝑛(𝑥, 𝑡)
𝜕𝑥2

− (1 − 𝑡+) 𝐼
𝐴𝐹𝐿𝑛

, 0 < 𝑥 < 𝐿𝑛 (11a)

𝜖𝑒,𝑠
𝜕𝑐𝑒,𝑠(𝑥, 𝑡)

𝜕𝑡
= 𝜖𝑏𝑒,𝑠𝐷𝑒

𝜕2𝑐𝑒,𝑠(𝑥, 𝑡)
𝜕𝑥2

, 𝐿𝑛 < 𝑥 < 𝐿𝑛 + 𝐿𝑠 (11b)

𝜖𝑒,𝑝
𝜕𝑐𝑒,𝑝(𝑥, 𝑡)

𝜕𝑡
= 𝜖𝑏𝑒,𝑝𝐷𝑒

𝜕2𝑐𝑒,𝑝(𝑥, 𝑡)

𝜕𝑥2
− (1 − 𝑡+) 𝐼

𝐴𝐹𝐿𝑝
, 𝐿𝑛 + 𝐿𝑠 < 𝑥 < 𝐿 (11c)

where 𝐷𝑒 is the diffusion coefficient for lithium in the electrolyte, x
is the linear distance along the cell length 𝐿 = 𝐿𝑛 + 𝐿𝑠 + 𝐿𝑝, and the
reference 𝑥 = 0 is placed at the interface between the anode and the
current collector. The boundary conditions at the endpoints of the cell
are the following [14]:
𝜕𝑐𝑒,𝑛(𝑥, 𝑡)

𝜕𝑥
|

|

|

|𝑥=0
= 0,

𝜕𝑐𝑒,𝑝(𝑥, 𝑡)
𝜕𝑥

|

|

|

|𝑥=𝐿
= 0, (12)

as well as continuity in concentration and flux between the different
domains [14]:

𝑐𝑒,𝑛(𝑥, 𝑡)
|

|

|𝑥=𝐿𝑛
= 𝑐𝑒,𝑠(𝑥, 𝑡)

|

|

|𝑥=𝐿𝑛
, 𝑐𝑒,𝑠(𝑥, 𝑡)

|

|

|𝑥=𝐿𝑛+𝐿𝑠
= 𝑐𝑒,𝑝(𝑥, 𝑡)

|

|

|𝑥=𝐿𝑛+𝐿𝑠

𝜖𝑏𝑛
𝜕𝑐𝑒,𝑛(𝑥,𝑡)

𝜕𝑥

|

|

|

|𝑥=𝐿𝑛

= 𝜖𝑏𝑠
𝜕𝑐𝑒,𝑠(𝑥,𝑡)

𝜕𝑥

|

|

|

|𝑥=𝐿𝑛

, 𝜖𝑏𝑛
𝜕𝑐𝑒,𝑠(𝑥,𝑡)

𝜕𝑥

|

|

|

|𝑥=𝐿𝑛+𝐿𝑠

= 𝜖𝑏𝑝
𝜕𝑐𝑒,𝑝(𝑥,𝑡)

𝜕𝑥

|

|

|

|𝑥=𝐿𝑛+𝐿𝑠

(13)

Proceeding as in Section 2.2, the variation in concentration with
respect to the typical lithium concentration in the electrolyte 𝑐𝑒,𝑡𝑦𝑝 is
taken as the equation variable:

𝑐𝑒,𝑘(𝑥, 𝑡) = 𝑐𝑒,𝑘(𝑥, 𝑡) − 𝑐𝑒,𝑡𝑦𝑝 (14)

Additionally, the following spatial variables are considered for con-
venience from now on:

𝑥𝑛 = 𝑥, 𝑥𝑛 ∈ [0, 𝐿𝑛], 𝑥𝑠 = 𝑥 − 𝐿𝑛, 𝑥𝑠 ∈ [0, 𝐿𝑠], 𝑥𝑝 = 𝐿 − 𝑥, 𝑥𝑝 ∈ [0, 𝐿𝑝]

(15)
4

Taking the Laplace transform of Eq. (11) yields the following set of
ordinary differential equations:

𝜕2𝑐𝑒,𝑛(𝑥𝑛, 𝑠)
𝜕𝑥2𝑛

− 𝑠
𝜖𝑏−1𝑒,𝑛 𝐷𝑒

𝑐𝑒,𝑛(𝑥𝑛, 𝑠) =
(1 − 𝑡+)

𝐴𝐹𝐿𝑛𝐷𝑒𝜖𝑏𝑒,𝑛
𝐼(𝑠) (16a)

𝜕2𝑐𝑒,𝑠(𝑥𝑠, 𝑠)
𝜕𝑥2𝑠

− 𝑠
𝜖𝑏−1𝑒,𝑠 𝐷𝑒

𝑐𝑒,𝑠(𝑥𝑠, 𝑠) = 0 (16b)

𝜕2𝑐𝑒,𝑝(𝑥𝑝, 𝑠)

𝜕𝑥2𝑝
− 𝑠

𝜖𝑏−1𝑒,𝑝 𝐷𝑒
𝑐𝑒,𝑝(𝑥𝑝, 𝑠) =

(1 − 𝑡+)
𝐴𝐹𝐿𝑝𝐷𝑒𝜖𝑏𝑒,𝑝

𝐼(𝑠) (16c)

Solving Eq. (16) and applying the boundary conditions at the end-
points of the cell in Eq. (12) yields Eq. (17):

𝑐𝑒,𝑛(𝑥𝑛, 𝑠) = 2𝐶𝑛 cosh
⎛

⎜

⎜

⎝

𝑥𝑛

√

𝑠
𝜖𝑏−1𝑒,𝑛 𝐷𝑒

⎞

⎟

⎟

⎠

−
(1 − 𝑡+)
𝐴𝐹𝐿𝑛𝜖𝑒,𝑛

𝐼(𝑠)
𝑠

(17a)

𝑐𝑒,𝑠(𝑥𝑠, 𝑠) = 𝐶𝑠,1 exp
⎛

⎜

⎜

⎝

𝑥𝑠

√

𝑠
𝜖𝑏−1𝑒,𝑠 𝐷𝑒

⎞

⎟

⎟

⎠

+ 𝐶𝑠,2 exp
⎛

⎜

⎜

⎝

−𝑥𝑠

√

𝑠
𝜖𝑏−1𝑒,𝑠 𝐷𝑒

⎞

⎟

⎟

⎠

(17b)

𝑐𝑒,𝑝(𝑥𝑝, 𝑠) = 2𝐶𝑝 cosh
⎛

⎜

⎜

⎝

𝑥𝑝

√

𝑠
𝜖𝑏−1𝑒,𝑝 𝐷𝑒

⎞

⎟

⎟

⎠

−
(1 − 𝑡+)
𝐴𝐹𝐿𝑝𝜖𝑒,𝑝

𝐼(𝑠)
𝑠

(17c)

where 𝐶𝑛, 𝐶𝑠,1, 𝐶𝑠,2 and 𝐶𝑝 have to be determined from the boundary
conditions in Eq. (13). In this article, instead of solving for the coeffi-
cients directly, we propose a method to simplify the system of equations
in Eq. (17) by deriving the required conditions to reduce the model. It
has to be noted that the consideration of spatial variables as in Eq. (15)
allows for the definition of the following timescales:

𝜏𝑒,𝑛 =
𝐿2
𝑛

𝜖𝑏−1𝑒,𝑛 𝐷𝑒
, 𝜏𝑒,𝑠 =

𝐿2
𝑠

𝜖𝑏−1𝑒,𝑠 𝐷𝑒
, 𝜏𝑒,𝑝 =

𝐿2
𝑝

𝜖𝑏−1𝑒,𝑝 𝐷𝑒
(18)

The ratio between the lithium migration timescales in the separator
and the electrodes is determined by Eq. (19):

𝜏𝑒,𝑠
𝜏𝑒,𝑛,𝑝

=
𝐿2
𝑠𝜖

𝑏−1
𝑒,𝑛,𝑝

𝐿2
𝑛,𝑝𝜖𝑏−1𝑒,𝑠

(19)

If this ratio is sufficiently close to 0, the electrolyte concentration in
the separator may be considered to be in steady state with respect to
that in the electrodes. This results in a linear concentration profile along
the separator length, by taking the limit 𝑠 → 0 in Eq. (16b). The slope
𝑚 of the concentration in the separator is determined by the boundary
condition regarding flux continuity in Eq. (13):

𝑚 = 2𝐶𝑛
𝜖𝑏𝑒,𝑛
𝜖𝑏𝑒,𝑠

√

𝑠
𝜖𝑏−1𝑒,𝑛 𝐷𝑒

sinh
(

√

𝜏𝑒,𝑛𝑠
)

(20)

A further simplification is carried out by calculating the ratio be-
tween the concentration at the electrode-separator interface and the
total concentration increment in the negative electrode. The concen-
tration at the electrode-separator interface is calculated assuming that
it is equal to half of the total variation in the separator:

|

|

|

𝑐𝑒,𝑠|𝑥𝑠=0
|

|

|

=
𝑚𝐿𝑠
2

= 𝐶𝑛
𝜖𝑏𝑒,𝑛
𝜖𝑏𝑒,𝑠

√

√

√

√

𝑠𝐿2
𝑠

𝜖𝑏−1𝑒,𝑛 𝐷𝑒
sinh

(

√

𝜏𝑒,𝑛𝑠
)

(21)

The concentration increment in the negative electrode is calculated
directly by substituting in Eq. (17a):
|

|

|

𝛥𝑐𝑒,𝑛
|

|

|

= 2𝐶𝑛

[

cosh
(

√

𝜏𝑒,𝑛𝑠
)

− 1
]

(22)

Therefore, the corresponding ratio is calculated as follows:

|

|

|

|

𝑐𝑒,𝑠|𝑥𝑠=0
𝛥𝑐𝑒,𝑠

|

|

|

|

= 1
2
𝜖𝑏𝑒,𝑛
𝜖𝑏𝑒,𝑠

sinh
(

√

𝜏𝑒,𝑛𝑠
)

cosh
(

√

𝜏𝑒,𝑛𝑠
)

− 1

√

√

√

√

𝑠𝐿2
𝑠

𝐷𝑒𝜖𝑏−1𝑒,𝑛

= 1
2
𝜖𝑏𝑒,𝑛
𝜖𝑏

coth

(
√

𝜏𝑒,𝑛𝑠

2

)

√

√

√

√

𝑠𝐿2
𝑠

𝐷 𝜖𝑏−1

(23)
𝑒,𝑠 𝑒 𝑒,𝑛
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One can verify that this ratio reduces to 𝐿𝑠𝜖𝑏𝑒,𝑛
𝐿𝑛𝜖𝑏𝑒,𝑠

for the frequency

range of interest around 𝜔 = 1
𝜏𝑒,𝑛

. Taking this into account, if
𝐿𝑠𝜖𝑏𝑒,𝑛,𝑝
𝐿𝑛,𝑝𝜖𝑏𝑒,𝑠

≪

1, the variations in concentration in the separator may be neglected
in comparison to those in the electrodes and, as a result, the bound-
ary condition for the concentration in the negative electrode may be
approximated by 𝑐𝑒,𝑛(𝑥𝑛, 𝑠)

|

|

|𝑥𝑛=𝐿𝑛
= 0.

Upon applying said boundary condition, the variation in the elec-
trolyte concentration is obtained as a function of 𝑥𝑛 and 𝑠:

𝑐𝑒,𝑛(𝑥𝑛, 𝑠) =
(1 − 𝑡+)
𝐴𝐹𝐿𝑛𝜖𝑒,𝑛

𝐼(𝑠)
𝑠

⎡

⎢

⎢

⎢

⎢

⎣

cosh
(

𝑥𝑛
√ 𝑠

𝜖𝑏−1𝑒,𝑛 𝐷𝑒

)

cosh
(

√

𝜏𝑒,𝑛𝑠
) − 1

⎤

⎥

⎥

⎥

⎥

⎦

(24)

Next, the electrode-averaged value of the variation in electrolyte
concentration is calculated:

𝑐𝑒,𝑛(𝑠) =
1
𝐿𝑛 ∫

𝐿𝑛

0
𝑐𝑒,𝑛(𝑥𝑛, 𝑠)𝑑𝑥𝑛

=
(1 − 𝑡+)
𝐴𝐹𝐿𝑛𝜖𝑒,𝑛

𝐼(𝑠)
𝑠

⎡

⎢

⎢

⎢

⎣

1
√

𝜏𝑒,𝑛𝑠 coth
(

√

𝜏𝑒,𝑛𝑠
) − 1

⎤

⎥

⎥

⎥

⎦

(25)

Therefore, the transfer function from the applied current to the
electrode-averaged variation in electrolyte concentration may be ex-
pressed as:

𝐺𝑒(𝑠) =
𝑐𝑒,𝑛(𝑠)
𝐼(𝑠)

= 𝐾𝑒,𝑛

⎡

⎢

⎢

⎢

⎣

1 −
√

𝜏𝑒,𝑛𝑠 coth
(

√

𝜏𝑒,𝑛𝑠
)

𝜏𝑒,𝑛𝑠
√

𝜏𝑒,𝑛𝑠 coth
(

√

𝜏𝑒,𝑛𝑠
)

⎤

⎥

⎥

⎥

⎦

(26)

where 𝐾𝑒,𝑛 =
(1−𝑡+)𝜏𝑒,𝑛
𝐴𝐹𝐿𝑛𝜖𝑒,𝑛

.
Proceeding as in Section 2.2, one can study the behavior of 𝐺𝑒(𝑠) in

the limits 𝑠 → 0 and 𝑠 → ∞ as in Eq. (27):

𝐺𝑒(𝑠) ≈

⎧

⎪

⎨

⎪

⎩

−𝐾𝑒,𝑛
3 , 𝑠 → 0

0, 𝑠 → ∞
(27)

In order to approximate the frequency response of 𝐺𝑒(𝑠) between
these two limits, we propose a ZARC element as expressed in Eq. (28):

𝐾𝑒,𝑛

⎡

⎢

⎢

⎢

⎣

1 −
√

𝜏𝑒,𝑛𝑠 coth
(

√

𝜏𝑒,𝑛𝑠
)

𝜏𝑒,𝑛𝑠
√

𝜏𝑒,𝑛𝑠 coth
(

√

𝜏𝑒,𝑛𝑠
)

⎤

⎥

⎥

⎥

⎦

≈ −
𝐾𝑒,𝑛∕3

1 +
(

𝛽𝑒𝜏𝑒,𝑛𝑠
)𝛼𝑒

(28)

As in Section 2.2, 𝛼𝑒 and 𝛽𝑒 must be determined so as to obtain
the closest approximation to 𝐺𝑒(𝑠). For this purpose, the frequency
response of both transfer functions is plotted in a Nyquist diagram and
the impedance error between the exact and the approximate transfer
function is minimized within a range of frequencies. In this case, we
have considered the interval 𝜔 =

[

1
103𝜏𝑒,𝑛

, 10
3

𝜏𝑒,𝑛

]

and the resulting values
are 𝛼𝑒 = 0.9936 and 𝛽𝑒 = 0.3983. The Nyquist plot of the frequency
response of both transfer functions with a positive real part is shown
in Fig. 2.

A similar result is obtained for the positive electrode with a plus
sign. As in Section 2.2, Eq. (28) is expressed in terms of the normalized
frequency 𝜏𝑒,𝑛𝑠, so this approximation remains valid regardless of the
specific physical parameter values. In the interest of simplicity, a value
of 𝛼𝑒 = 1 will be used further in this article. Lastly, the overpoten-
tial due to concentration gradients in the electrolyte 𝜂𝑐 is calculated
according to Eq. (2b):

𝜂𝑐 (𝑠) =
2𝑅𝑇
𝐹

(1 − 𝑡+)
𝑐𝑒,𝑡𝑦𝑝

(

𝑐𝑒,𝑝 − 𝑐𝑒,𝑛
)

= 2𝑅𝑇 (1 − 𝑡+)
( 𝐾𝑒,𝑝∕3 +

𝐾𝑒,𝑛∕3
)

𝐼(𝑠)
(29)
5

𝐹 𝑐𝑒,𝑡𝑦𝑝 1 + 𝛽𝜏𝑒,𝑝𝑠 1 + 𝛽𝜏𝑒,𝑛𝑠
Fig. 2. Nyquist plot of the frequency response of the exact and approximate normalized
transfer functions in Eq. (28) for diffusion in the electrolyte.

If 𝐿𝑛 ≈ 𝐿𝑝 and 𝜖𝑒,𝑛 ≈ 𝜖𝑒,𝑝, the terms corresponding to both electrodes
in Eq. (29) may be combined into one single RC network.

2.4. Charge transfer overpotential

From the expressions for the solid and electrolyte concentrations
determined in Sections 2.2 and 2.3, an accurate approximation of the
reaction overpotentials may be obtained according to Eq. (2c). For this
purpose, the exchange current densities 𝑗0,𝑛 and 𝑗0,𝑝 are calculated as
follows [14]:

𝑗0,𝑛 =
1
𝐿𝑛

∫ 𝐿𝑛
0 𝑚𝑛𝑐𝑛,𝑚𝑎𝑥

√

𝜒𝑠,𝑛(1 − 𝜒𝑠,𝑛)
√

𝑐𝑒,𝑛𝑑𝑥𝑛

𝑗0,𝑝 =
1
𝐿𝑝

∫ 𝐿𝑝
0 𝑚𝑝𝑐𝑝,𝑚𝑎𝑥

√

𝜒𝑠,𝑝(1 − 𝜒𝑠,𝑝)
√

𝑐𝑒,𝑝𝑑𝑥𝑝

(30)

where 𝑚𝑛 and 𝑚𝑝 are the reaction rates of the negative and positive
electrode, respectively. Note that 𝜒𝑠,𝑛 and 𝜒𝑠,𝑝 have been determined
already in Section 2.2 and do not depend on the 𝑥 dimension in the
SPMe. Therefore, the negative electrode exchange current density may
be rewritten as follows:

𝑗0,𝑛 = 𝑚𝑛𝑐𝑛,𝑚𝑎𝑥
√

𝜒𝑠,𝑛(1 − 𝜒𝑠,𝑛)
√

𝑐𝑒,𝑡𝑦𝑝
1
𝐿𝑛 ∫

𝐿𝑛

0

√

1 +
𝑐𝑒,𝑛
𝑐𝑒,𝑡𝑦𝑝

𝑑𝑥𝑛 (31)

Assuming that the variation in the electrolyte concentration is suf-
ficiently smaller than the typical concentration 𝑐𝑒,𝑡𝑦𝑝, the following
approximation can be made:

𝑗0,𝑛 ≈ 𝑚𝑛𝑐𝑛,𝑚𝑎𝑥
√

𝜒𝑠,𝑛(1 − 𝜒𝑠,𝑛)
√

𝑐𝑒,𝑡𝑦𝑝
1
𝐿𝑛 ∫

𝐿𝑛

0

(

1 +
𝑐𝑒,𝑛

2𝑐𝑒,𝑡𝑦𝑝

)

𝑑𝑥𝑛 (32)

Consequently, the negative electrode exchange current density may
be rewritten as a function of the electrode-averaged variation in the
electrolyte concentration 𝑐𝑒,𝑛, which was determined in the previous
Section:

𝑗0,𝑛 ≈ 𝑚𝑛𝑐𝑛,𝑚𝑎𝑥
√

𝜒𝑠,𝑛(1 − 𝜒𝑠,𝑛)
√

𝑐𝑒,𝑡𝑦𝑝

(

1 +
𝑐𝑒,𝑛

2𝑐𝑒,𝑡𝑦𝑝

)

(33)

From this expression of the exchange current density, the charge-
transfer overpotential may be calculated according to Eq. (2c):

𝜂𝑟,𝑛 =
2𝑅𝑇
𝐹

sinh−1
(

𝐼𝑅𝑛
6𝑗0,𝑛𝜖𝑛𝐿𝑛𝐴

)

(34)

This may also be expressed via the charge-transfer resistance, in-
cluding its explicit dependence on the applied current as in Eq. (35)
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Fig. 3. (a) Full equivalent circuit model. (b) Simplified equivalent circuit model.
𝑅𝑐𝑡,𝑛(𝐼) =
2𝑅𝑇
𝐹𝐼0,𝑛

[ 𝐼0,𝑛
𝐼

sinh−1
(

𝐼
𝐼0,𝑛

)]

, 𝐼0,𝑛 =
6𝑗0,𝑛𝜖𝑛𝐿𝑛𝐴

𝑅𝑛
(35)

A similar result is obtained for the positive electrode. We con-
sider this to be a major advantage of employing electrode-averaged
quantities as in [14], which allows for an accurate estimation of the
reaction overpotential from only the electrode-averaged electrolyte
concentration instead of having to solve for the concentration profile
along the 𝑥 dimension. Taking into account the current dependence of
the reaction overpotentials is especially critical in applications where a
wide range of current rates is expected.

2.5. Equivalent circuit model

According to the output voltage expression in Eq. (1) and the result-
ing equations for the individual terms in Eq. (2), the equivalent circuit
model in Fig. 3-(a) may be constructed, where the resistors 𝑅𝑜ℎ𝑚,𝑒 =
1
𝜅𝐴

(

𝐿𝑛
3𝜖𝑏𝑒,𝑛

+ 𝐿𝑠
𝜖𝑏𝑒,𝑠

+ 𝐿𝑝
3𝜖𝑏𝑒,𝑝

)

and 𝑅𝑜ℎ𝑚,𝑠 = 1
3𝐴

(

𝐿𝑛
𝜎𝑛

+ 𝐿𝑝
𝜎𝑝

)

correspond to the
terms in Eqs. (2d) and (2e).

For the time-domain implementation of the circuit, a set of serially
connected parallel RC branches will be employed as an approximation
6

Table 1
Parameter equations for the 7-RC approximation as a function of 𝛼 [53].

Parameter Expression

𝑟1 = 𝑟7 0.14(1 − 𝛼)2

𝑟2 = 𝑟6 0.22(1 − 𝛼) − 0.08(1 − 𝛼)3

𝑟3 = 𝑟5
(

0.12 + 0.057𝑒3.4𝛼
)

(1 − 𝛼)
𝑟4 1 − 2

(

𝑟1 + 𝑟2 + 𝑟3
)

𝑡1 = 1/𝑡7 1.4 ⋅ 10−8𝑒19𝛼(1.6−𝛼)

𝑡2 = 1/𝑡6
0.078𝛼5.63

0.026+𝛼3.67

𝑡3 = 1/𝑡5
0.56𝛼2.27

0.4+𝛼1.3

𝑡4 1

of the ZARC element. In particular, we will use the continuous approx-
imation by 7 RC elements that we presented in [53]. This approach
is the most appropriate for the time-domain simulation of the ZARC
element as we showed in [56], due to the fact that it avoids the issues
caused by the specification of a memory length in the Grünwald–
Letnikov approach. Taking the fractional order 𝛼, the resistor 𝑅𝑍𝐴𝑅𝐶
and the time constant 𝜏𝑍𝐴𝑅𝐶 as inputs, the parameter values are
directly calculated as 𝑅𝑖 = 𝑅𝑍𝐴𝑅𝐶 ⋅ 𝑟𝑖(𝛼) and 𝜏𝑖 = 𝜏𝑍𝐴𝑅𝐶 ⋅ 𝑡𝑖(𝛼) for
seven-element network according to Table 1 [53]:
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𝑥

w

𝐴

𝜒

As a result, the approximate discrete state-space representation of a
ZARC element is shown in Eq. (36):

𝑥𝑍𝐴𝑅𝐶 (𝑘) =
[

𝑖1(𝑘) 𝑖2(𝑘) … 𝑖7(𝑘)
]𝑇

𝑥𝑍𝐴𝑅𝐶 (𝑘) = 𝐴𝑍𝐴𝑅𝐶𝑥𝑍𝐴𝑅𝐶 (𝑘 − 1) + 𝐵𝑍𝐴𝑅𝐶𝑢(𝑘 − 1)
𝑦𝑍𝐴𝑅𝐶 (𝑘) = 𝐶𝑍𝐴𝑅𝐶𝑥𝑍𝐴𝑅𝐶 (𝑘)

(36)

where 𝑥𝑍𝐴𝑅𝐶 is the state vector, 𝑢 is the input current and 𝑦𝑍𝐴𝑅𝐶 is the
total voltage difference in the subcircuit, with the following state-space
representation matrices:

𝐴𝑍𝐴𝑅𝐶 = 𝑑𝑖𝑎𝑔
[

exp
(

− 𝛥𝑡
𝜏1

)

exp
(

− 𝛥𝑡
𝜏2

)

… exp
(

− 𝛥𝑡
𝜏7

)]

𝐵𝑍𝐴𝑅𝐶 =
[

1 − exp
(

− 𝛥𝑡
𝜏1

)

1 − exp
(

− 𝛥𝑡
𝜏2

)

… 1 − exp
(

− 𝛥𝑡
𝜏7

)]𝑇

𝐶𝑍𝐴𝑅𝐶 =
[

𝑅1 𝑅2 … 𝑅7
]

(37)

where 𝛥𝑡 is the sampling time.
Consequently, the state vector and the state equation of the ECM

are as follows:

𝑥(𝑘) =
[

𝜒𝑝(𝑘) 𝑥𝑍𝐴𝑅𝐶,𝑝(𝑘) 𝑐𝑒,𝑝(𝑘) 𝜒𝑛(𝑘) 𝑥𝑍𝐴𝑅𝐶,𝑛(𝑘) 𝑐𝑒,𝑛(𝑘)
]𝑇

(𝑘) = 𝐴𝑥(𝑘 − 1) + 𝐵𝑢(𝑘 − 1), 𝑢(𝑘) = 𝐼(𝑘)

(38)

here

= 𝑑𝑖𝑎𝑔
[

1 𝑑𝑖𝑎𝑔(𝐴𝑍𝐴𝑅𝐶,𝑝) exp
(

− 𝛥𝑡
𝛽𝑒𝜏𝑒,𝑝

)

1 𝑑𝑖𝑎𝑔(𝐴𝑍𝐴𝑅𝐶,𝑛) exp
(

− 𝛥𝑡
𝛽𝑒𝜏𝑒,𝑛

)]

𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 𝐾𝑝𝛥𝑡
3𝜏𝑝

−𝐵𝑍𝐴𝑅𝐶,𝑝

𝐾𝑒,𝑝

3

[

1 − exp
(

− 𝛥𝑡
𝛽𝑒𝜏𝑒,𝑝

)]

𝐾𝑛𝛥𝑡
3𝜏𝑛

𝐵𝑍𝐴𝑅𝐶,𝑛

− 𝐾𝑒,𝑛

3

[

1 − exp
(

− 𝛥𝑡
𝛽𝑒𝜏𝑒,𝑛

)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(39)

Note the minus sign in the terms corresponding to the positive
particle and the electrolyte concentration in the negative electrode
in matrix 𝐵. Before evaluating the output voltage expression, it is
convenient to calculate explicitly the surface concentration of both
particles as well as the exchange current density in both electrodes:

𝜒𝑠,𝑝(𝑘) = 𝜒𝑝(𝑘) + 𝐶𝑍𝐴𝑅𝐶,𝑝𝑥𝑍𝐴𝑅𝐶,𝑝(𝑘)

𝑠,𝑛(𝑘) = 𝜒𝑛(𝑘) + 𝐶𝑍𝐴𝑅𝐶,𝑛𝑥𝑍𝐴𝑅𝐶,𝑛(𝑘)

𝑗0,𝑝(𝑘) = 𝑚𝑝𝑐𝑝,𝑚𝑎𝑥
√

𝜒𝑠,𝑝(𝑘)(1 − 𝜒𝑠,𝑝(𝑘))
√

𝑐𝑒,𝑡𝑦𝑝

(

1 + 𝑐𝑒,𝑝(𝑘)
2𝑐𝑒,𝑡𝑦𝑝

)

𝑗0,𝑛(𝑘) = 𝑚𝑛𝑐𝑛,𝑚𝑎𝑥
√

𝜒𝑠,𝑛(𝑘)(1 − 𝜒𝑠,𝑛(𝑘))
√

𝑐𝑒,𝑡𝑦𝑝

(

1 + 𝑐𝑒,𝑛(𝑘)
2𝑐𝑒,𝑡𝑦𝑝

)

(40)

Taking all the previous equations into account, the output voltage
expression is as follows:

𝑣(𝑘) = 𝑂𝐶𝑃𝑝(𝜒𝑠,𝑝(𝑘)) − 𝑂𝐶𝑃𝑛(𝜒𝑠,𝑛(𝑘)) +
2𝑅𝑇
𝐹

(1 − 𝑡+)
𝑐𝑒,𝑡𝑦𝑝

(

𝑐𝑒,𝑝(𝑘) − 𝑐𝑒,𝑛(𝑘)
)

+ 2𝑅𝑇
𝐹

[

sinh−1
( 𝐼𝑅𝑝

6𝑗0,𝑝(𝑘)𝜖𝑝𝐿𝑝𝐴

)

+ sinh−1
(

𝐼𝑅𝑛
6𝑗0,𝑛(𝑘)𝜖𝑛𝐿𝑛𝐴

)]

+ 𝐼
𝜅𝐴

(

𝐿𝑛

3𝜖𝑏𝑒,𝑛
+

𝐿𝑠

𝜖𝑏𝑒,𝑠
+

𝐿𝑝

3𝜖𝑏𝑒,𝑝

)

+ 𝐼
3𝐴

(

𝐿𝑛
𝜎𝑛

+
𝐿𝑝

𝜎𝑝

)

(41)

If both electrodes are assumed to have similar physical and spatial
properties, the ECM can be further simplified to that in Fig. 3-(b), thus
reducing in half the number of required states.

The developed ECM may be interpreted as the combination of the
two discussed approaches in Section 1: on the one hand, the transcen-
dental transfer functions are obtained directly from the electrochemical
7

model and then approximated with fractional-order transfer functions
instead of Padé’s approximant [40–43] in our case. On the other
hand, the standard RC equivalent circuit model from [36] is split into
two sections as in [39], so that the leftmost one accounts for the
lithium diffusion within the active material particles. Consequently, the
lithium concentration is evaluated at their surface, thus establishing a
more accurate correspondence with the manner in which the electrode
potential is calculated in electrochemical models. However, a better
description of the diffusion process is achieved with a ZARC element
instead of a RC network, as indicated by the optimal order exponent
𝛼 = 0.82. Therefore, this model, stated in this way, may be useful
for most of the applications where ECMs are employed providing
additional physical insight, and may also be implemented in standard
circuit simulators by substituting the ZARC element by its multiple-RC
approximation [53], thus allowing for a simple simulation of constant-
voltage phases by substituting the current source in Fig. 3 by a voltage
source.

2.6. Frequency domain application

From the obtained transfer functions, it is possible to determine
the medium and low frequency response of the cell directly given
its physical parameters. However, the high-frequency transient effects
of the charge transfer processes are usually not considered in the
DFN or SPMe due to them being orders of magnitude faster than
diffusion dynamics. Consequently, in order to accurately reproduce EIS
data, a CPE is usually connected in parallel with the charge-transfer
resistance 𝑅𝑐𝑡 in the circuit shown in Fig. 3-(b). The small-signal value
of 𝑅𝑐𝑡 is calculated by taking into account that for small values of 𝑥,
𝑥−1 sinh−1 (𝑥) ≈ 1:

𝑅𝑐𝑡(𝐼 ≈ 0) = 2𝑅𝑇
𝐹𝐼0

, 𝑍𝑐𝑡(𝑠) =
𝑅𝑐𝑡

1 +
(

𝜏𝑐𝑡𝑠
)𝛼𝑐𝑡

(42)

Conversely, if the frequency-domain behavior of the battery cell is
characterized experimentally in an EIS test, there will be a substantial
overlap between the effects of both electrodes and only the effective
parameters for the simplified ECM in Fig. 3-(b) will be identifiable.
Given that an EIS test consists of small-signal variations around a
certain operating point, the ECM is linearized around 𝑆𝑂𝐶 = 𝑆𝑂𝐶𝐸𝐼𝑆 .
Using the fact that cell SOC remains unchanged, one can write:

𝑂𝐶𝑉 (𝜒𝑠) = 𝑂𝐶𝑉 (𝑆𝑂𝐶𝐸𝐼𝑆 ) +
𝜕𝑂𝐶𝑉
𝜕𝑆𝑂𝐶

|

|

|

|𝑆𝑂𝐶𝐸𝐼𝑆

𝜒𝑠 (43)

where 𝜕𝑂𝐶𝑉
𝜕𝑆𝑂𝐶

|

|

|𝑆𝑂𝐶𝐸𝐼𝑆
is determined empirically from the OCV-SOC rela-

tionship and the frequency response of 𝜒𝑠 may be approximated by that
of a ZARC element. Therefore, a possible transfer function for fitting
EIS data is composed of the addition of an ohmic resistor, a high-
frequency ZARC element for charge transfer processes, a mid-frequency
RC element for the diffusion in the electrolyte and a low-frequency
ZARC element for the solid diffusion, as shown in Eq. (44):

𝑍(𝑠) = 𝑅𝑜ℎ𝑚 +
𝑅𝑐𝑡

1 +
(

𝜏𝑐𝑡𝑠
)𝛼𝑐𝑡

+
𝑅𝑒

1 + 𝜏𝑒𝑠
+ 𝜕𝑂𝐶𝑉

𝜕𝑆𝑂𝐶
|

|

|

|𝑆𝑂𝐶𝐸𝐼𝑆

𝐾𝑠

1 +
(

𝜏𝑠𝑠
)𝛼𝑠

(44)

where and the parameters to be identified are 𝑅𝑜ℎ𝑚, 𝑅𝑐𝑡, 𝜏𝑐𝑡, 𝛼𝑐𝑡, 𝑅𝑒,
𝜏𝑒, 𝐾𝑠 and 𝜏𝑠, although 𝜏𝑐𝑡 and 𝛼𝑐𝑡 will not be used in the ECM.
Additionally, the value of the exchange current 𝐼0 may be calculated
directly from 𝑅𝑐𝑡, so as to take into account the current dependence of
the charge transfer resistance for large-signal operation.

We believe that the correspondence between the time and
frequency-domain behaviors of the cell is an advantage over elec-
trochemical models, as it also provides a consistent characterization
method since physical parameters are grouped in resistors and time
constants.
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Table 2
Parameter set from [14].

Parameter Units Description Value

Negative electrode

𝐿𝑛 m Thickness 1 ⋅ 10−4

𝑅𝑛 m Particle radius 1 ⋅ 10−5

𝐷𝑛 m2∕s Solid diffusivity 3.9 ⋅ 10−14

𝜖𝑛 – Active material volume fraction 0.6
𝑐𝑛,𝑚𝑎𝑥 mol∕m3 Maximum lithium concentration 2.4983 ⋅ 104

𝜎𝑛 S∕m Solid conductivity 100
𝜖𝑒,𝑛 – Porosity 0.3
𝑚𝑛 (A∕m2)(m3∕mol)1.5 Reaction rate 2 ⋅ 10−5

Positive electrode

𝐿𝑝 m Thickness 1 ⋅ 10−4

𝑅𝑝 m Particle radius 1 ⋅ 10−5

𝐷𝑝 m2∕s Solid diffusivity 1 ⋅ 10−13

𝜖𝑝 – Active material volume fraction 0.5
𝑐𝑝,𝑚𝑎𝑥 mol∕m3 Maximum lithium concentration 5.1218 ⋅ 104

𝜎𝑝 S∕m Solid conductivity 10
𝜖𝑒,𝑝 – Porosity 0.3
𝑚𝑝 (A∕m2)(m3∕mol)1.5 Reaction rate 6 ⋅ 10−7

Separator

𝐿𝑠 m Thickness 2.5 ⋅ 10−5

𝜖𝑒,𝑠 – Porosity 1

Overall

𝑐𝑒,𝑡𝑦𝑝 mol∕m3 Typical electrolyte concentration 1 ⋅ 103

𝐷𝑒 m2∕s Typical electrolyte diffusivity 5.34 ⋅ 10−10

𝜅 S∕m Typical electrolyte conductivity 1.1
𝑡+ – Transference number 0.4
𝑏 – Bruggeman coefficient 1.5
𝐴 m2 Electrode area 2.8359 ⋅ 10−2

𝑄 Ah Cell capacity 0.68

3. Theoretical results and discussion

In this section, the performance of the proposed ECM is validated
against the SPMe from [14] for different current profiles. For the sim-
ulation of the electrochemical model, we have used PyBaMM (Python
Battery Mathematical Modeling) [57]. PyBaMM is a battery modeling
software implemented in Python designed to simplify the comparison
of standard battery models by providing an interface to discretization
methods and numerical solvers. In this case, we have employed a
typical discretization consisting of 20 points in each domain as well
as 20 points for both particles.

The set of physical parameters is shown in Table 2.
Before carrying out the simulations, the validity of the approxima-

tions derived in Section 2.3 is verified:
𝐿2
𝑠𝜖

𝑏−1
𝑒,𝑛,𝑝

𝐿2
𝑛,𝑝𝜖𝑏−1𝑒,𝑠

= 0.034 ≪ 1,
𝐿𝑠𝜖𝑏𝑒,𝑛,𝑝
𝐿𝑛,𝑝𝜖𝑏𝑒,𝑠

= 0.041 ≪ 1 (45)

Next, the performance of the proposed ECM has been validated
against the cited SPMe model by comparing their simulation results
for distinct operation scenarios. In this case, we have employed four
constant-current discharges at 2C, 1C, C/2 and C/5 followed by a 30-
min rest where C-rate is the measurement of the charge and discharge
current with respect to its nominal capacity. Additionally, we have also
considered a driving cycle (US06) in order to test our model under
dynamic operating conditions.

The simulation results for the constant-current discharges are shown
in Fig. 4, plotted with respect to normalized time as a function of the C-
rate. It is observed that the proposed model is able to reproduce the cell
voltage accurately during the discharge regardless of the current rate.
We attribute this mainly to the precise calculation of the charge-transfer
reaction overpotentials as detailed in Section 2.4, which present a
highly nonlinear dependency on current. Furthermore, the relaxation
profile is also accurately modeled due to the introduction of fractional-
order circuit elements to account for the solid diffusion process. The
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voltage response of the battery and the US06 current profile are shown
in Fig. 5. It can also be observed that the proposed ECM is able
to yield a greatly accurate terminal voltage in dynamic conditions.
Furthermore, the comparison between the battery internal states and
their equivalent in the proposed ECM is shown in Fig. 6. Given that
the proposed model has been analytically derived from the SPMe, it is
able to provide information about the internal states of the battery. We
believe this is a qualitative advantage over standard equivalent circuit
models [26], which are constructed to reproduce battery voltage only.
Nevertheless, a thorough comparison between the accuracy of different
ECMs with respect to experimental data constitutes a separate study
that is beyond the scope of this article. There could be many factors
involved in the discrepancies between model results and experimental
data, such as temperature, hysteresis and current-rate effects, as well as
the parameterization process and the operating conditions under which
the models are tested.

The error results between the SPMe and the proposed ECM are sum-
marized in Table 3. It has to be pointed out that not only does the model
provide an accurate approximation of the terminal voltage, but also
the internal states of the battery, namely the surface concentration of
the solid particles and the electrode-averaged electrolyte concentration,
which results in a precise calculation of the charge-transfer reaction
overpotentials. The maximum voltage error occurs immediately after
the end of the discharge, due to the fact that the proposed approxima-
tion for the solid diffusion transfer function is less accurate at higher
frequencies, as observed in Fig. 1. This also explains the slightly higher
error in the surface concentration of the negative particle in comparison
to the positive particle, given its larger solid diffusion time constant.
The electrode-averaged electrolyte concentration is also modeled with
great accuracy: taking into account that its typical concentration is
𝑐𝑒,𝑡𝑦𝑝 = 1000 mol/m3, the relative RMS and maximum errors are below
0.6% and 3% respectively. Note that the results for the electrolyte
concentration are equal in both electrodes due to the fact that their
thickness and porosity have the same values in this parameter set; this
is not a general result nonetheless. In conclusion, the proposed ECM
is able to accurately model the output voltage as well as the internal
states with respect to an SPMe.

Lastly, a comparison on the computational requirements of both
models is carried out. We have determined that the proposed ECM
is about 3 to 4 times quicker on average for the same timestep and
simulation profile; however, we believe that the main advantage of our
model with respect to the SPMe is the number of states required. For a
typical discretization, such as the one considered here, 100 states must
be stored and updated every timestep for the SPMe, whereas only 18
are necessary for the full ECM and 9 for the simplified version if the
7-RC approximation of the ZARC element is employed. Nevertheless,
other continuous approximations by 5 [53] and 3 [49] RC networks
have also been reported in recent literature, so should the available
memory be tightly constrained, the number of necessary states may
be potentially reduced to 14 or 10 for the full ECM and 7 or 5 for
the simplified ECM, without a major loss of accuracy. This is a crucial
feature given the limitations on memory and computation power in
on-board BMSs.

Furthermore, although some state observers have been proposed
for the SPM and SPMe [15,42], employing an ECM makes it simpler
to implement a Dual Fractional-Order Extended Kalman Filter for the
concurrent estimation of state of charge and circuit parameters, as we
presented in [56], with the advantage that the identified parameters
are directly related to their physical counterparts in this model.

4. Experimental application

In this section, the simplified version of the proposed equivalent
circuit model is compared to experimental data by identifying the

equivalent circuit parameters from an EIS test.
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Fig. 4. Terminal voltage for the SPMe and the proposed ECM for a constant-current discharge at (a) 2C, (b) 1C, (c) C/2 and (d) C/5 respectively, followed by a 30-min rest.
Curves have been plotted with respect to normalized time, i.e. time divided by the nominal discharge duration according to the C-rate.

Fig. 5. Terminal voltage and input current for the SPMe and the proposed ECM for the US06 driving cycle.
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Fig. 6. Normalized surface concentration in the positive and negative particles 𝜒𝑠,𝑝 , 𝜒𝑠,𝑝, and electrode-averaged electrolyte concentrations 𝑐𝑒,𝑝 , 𝑐𝑒,𝑛 for the SPMe and the proposed
ECM for the US06 driving cycle.
Table 3
RMS error results for the simulated profiles in the indicated units, with maximum error between brackets.

2C 1C C/2 C/5 US06

𝑉 (mV) 1.46 [15.4] 0.95 [6.24] 0.40 [2.35] 0.13 [0.77] 1.08 [3.49]
𝜒𝑠,𝑝 (%) 0.01 [0.04] 0.006 [0.02] 0.003 [0.01] 0.001 [0.004] 0.07 [0.41]
𝜒𝑠,𝑛 (%) 0.09 [0.22] 0.04 [0.11] 0.02 [0.06] 0.004 [0.02] 0.28 [1.15]
𝑐𝑒,𝑝 (mol∕m3) 5.94 [12.3] 3.45 [5.95] 1.89 [2.97] 0.81 [1.19] 5.99 [29.6]
𝑐𝑒,𝑛 (mol∕m3) 5.94 [12.3] 3.45 [5.95] 1.89 [2.97] 0.81 [1.19] 5.99 [29.6]
𝜂𝑝 (mV) 0.26 [0.42] 0.11 [0.13] 0.04 [0.49] 0.008 [0.011] 0.32 [1.40]
𝜂𝑛 (mV) 0.009 [0.04] 0.006 [0.011] 0.002 [0.003] 0.001 [0.001] 0.05 [0.38]
4.1. Experimental setup

In this article, a NMC811/Gr commercial cell manufactured by
Samsung-SDI (INR18650-25R8) was investigated. This cell presents a
nominal voltage of 3.7 V and a nominal discharge capacity Q ≥ 2500
mAh when discharged at C/5 within the upper and lower voltage limits
of 4.2 V and 2.5 V, respectively. A high-precision Arbin LBT21084MC
battery tester was employed for the experimental cycling schemes,
whereas a Gamry Reference 3000™ potentiostat/galvanostat was used
for EIS characterization. A constant ambient temperature of 23 ◦C
was achieved with the aid of a Memmert environmental chamber. The
temperatures in the environmental chamber and the cell case were mea-
sured with respective T-type copper-constantan thermocouples with
a standard tolerance of ±1 ◦C and logged into the Arbin system. A
general perspective of the battery testing system with its associated
environmental chamber is shown in Fig. 7-(a), whereas a detail of
10
the analyzed cell with its thermocouple and battery holder may be
observed in Fig. 7-(b).

The experiments started with the conditioning procedures followed
by added thermodynamic testing at C/25, with the purpose of deter-
mining of the Open Circuit Voltage (OCV) as a function of SOC [58].
Subsequently, a Reference Performance Test (RPT) was conducted,
which consisted of a set of charge and discharge cycles at 1C, C/2 and
C/5, while maintaining a CC-CV charging scheme at C/2 (1.25 A) up
to 4.2 V until the current fell below to C/50 (50 mA). To conclude the
RPT, an EIS test was performed at 50% SOC from 10 mHz to 10 kHz.

Once the RPT was completed, several cycles consisting of Dynamic
Stress Tests (DST) profiles [59] were carried out in order to evaluate
the dynamic behavior of the proposed model. The DST schedule was
scaled to 700 W/kg, and repeated until the cell reached the discharge
cut-off voltage.
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Fig. 7. (a) Arbin LBT20084 battery system and environmental chamber (b) Cell under test in the Arbin battery holder inside the climatic chamber, with its thermocouple attached
with adhesive putty.
4.2. Experimental results and discussion

The purpose of this subsection is to make use of the equivalence
between the frequency and time-domain behaviors of the proposed
model via the obtained transfer functions. We believe this constitutes
another qualitative advantage over standard circuit models due to the
fact that small-signal parameters may be employed in the time domain,
thus avoiding the issues with parameterizations from time-domain data.
For instance, time-domain parameterizations might not be unique since
there may potentially be multiple error minima with substantially
different parameter values for a given current profile. We reviewed
and discussed this subject in [56] and emphasized the importance of
frequency-domain data for a physics-informed parameterization, as the
timescales of the different processes taking place during battery opera-
tion are more easily distinguishable in EIS measurements. Nevertheless,
we will not carry out a comprehensive cell parameterization as in [60]
or the subsequent quantitative validation of the full model in Fig. 3-(a),
since testing the complete ECM by taking into account the different
characteristics of both electrodes is beyond the scope of this article.

Herein, the equivalent circuit parameters for the simplified version
of the ECM in Fig. 3-(b) will be identified according to the proce-
dure described in Section 2.6, from the EIS data obtained with the
experimental scheme described in Section 4. We are aware of the
fact that some parameters, such as the charge-transfer resistance, may
change significantly with temperature and state of charge, as shown in
Section 2. However, we will consider the reference parameters to be
those identified at 50% SOC, so as to use a unique value within the
whole SOC range. Furthermore, in order to avoid issues with hysteresis
voltage, we will consider the discharge curve obtained at C/25 as the
reference OCV given that we will only compare discharge processes.
This results in 𝜕𝑂𝐶𝑉 ≈ 0.934 V at 50% SOC.
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𝜕𝑆𝑂𝐶
The identification of parameters was performed with standard Par-
ticle Swarm Optimization (PSO) [61]. The cost function was defined as
the weighted distance between the experimental data and the theoret-
ical impedance in Eq. (44) the Nyquist diagram, expressed in Eq. (46):

𝐶 =
𝑁
∑

𝑘=1
𝑤𝑘

[

(

𝐼𝑚(𝑍𝑒𝑠𝑡(𝑗𝜔𝑘)) − 𝐼𝑚(𝑍𝑒𝑥𝑝(𝑗𝜔𝑘))
)2

+
(

𝑅𝑒(𝑍𝑒𝑠𝑡(𝑗𝜔𝑘)) − 𝑅𝑒(𝑍𝑒𝑥𝑝(𝑗𝜔𝑘))
)2
]

(46)

Although we are employing a metaheuristic optimization algorithm
for parameter identification, we believe this entails an advantage over
time-domain identification, since in this case the target transfer func-
tion is well defined and the upper and lower bounds for each parameter
are roughly known from physical parameters. In addition to this, the
determination of the parameters relative to the charge-transfer ZARC
element can be carried out analytically, as we presented in [56], thus
reducing the number of free parameters and the computation time as a
consequence.

Experimental data and fitted results are shown in Fig. 8. The accu-
rate match between both sets of points serves to validate the approxi-
mate transfer functions derived in Section 2.5. The minor discrepancies
observed at high frequencies are not due to a modeling error, but the
influence of parasitic inductive elements [45].

The value of 𝐾𝑠 is calculated directly from 𝑅𝑠 and 𝜕𝑂𝐶𝑉
𝜕𝑆𝑂𝐶 . It is

also noted that 𝜏𝑅𝑐𝑡 has a value on the order of 1 ms, which explains
why 𝜏𝑅𝑐𝑡 and 𝛼𝑅𝑐𝑡 have been considered in the fit but not taken into
account in time-domain simulations. Next, the identified parameters
will be employed to simulate the ECM in the time domain so as to
compare its behavior to the experimental data acquired according to
the procedures described in Section 4.1. The obtained small-signal
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Fig. 8. Experimental EIS data at 50% SOC for the analyzed cell and fit results.

Fig. 9. Experimental and simulation results for a constant-current discharge at (a) C/5, (b) C/2 and (c) 1C and (d) a full discharge with a DST profile. Curves have been plotted
with respect to normalized time, i.e. time divided by the nominal discharge duration according to the C-rate. The average discharge rate for the DST profile is C/2.
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parameters may be considered as a reliable starting point; however,
slight adjustments are required as a function of the current rate in order
to achieve a closer agreement with experimental results. Consequently,
additional nonlinear effects that are usually not considered in standard
electrochemical models may be accounted for in this manner.

Simulated and experimental results are shown in Fig. 9 for C/5,
C/2 and 1C discharges, along with a complete discharge following the
DST profile. The curves corresponding to the model results have been
obtained by tweaking the value of the resistor associated with the solid
diffusion process, which is equivalent to an adjustment of effective solid
diffusion coefficient. The corresponding values are 𝐾𝑠 = 0.045(1∕A),
𝐾𝑠 = 0.029(1∕A), 𝐾𝑠 = 0.020(1∕A) and 𝐾𝑠 = 0.026(1∕A), and the
RMS voltage errors are 10.5 mV, 25.2 mV, 26.7 mV and 36.4 mV
for the C/5, C/2, 1C and DST discharges, respectively. A decreasing
dependency of this parameter on the current rate is observed from its
small-signal value identified in EIS tests 𝐾𝑠 = 0.057(1∕A) to that of
arger average currents. It has to be pointed out that the value obtained
or the defined DST profile is similar to that of the C/2 discharge, given
hat the former presents an average discharge rate of C/2. Nevertheless,
thorough analysis of the dependency of the effective solid diffusion

oefficient with current rate is beyond the scope of this paper, and will
e considered in future research.

The disagreement between the experimental and simulated results
owards the end of the discharge process, especially at higher currents,
ay be ascribed mainly to the fact that the OCV-SOC curve is highly
onlinear at low SOCs. Therefore, the model result obtained with first-
rder models, such as the SPMe or this ECM, differs from that of the
umerical resolution of the DFN, as demonstrated in [14]. Furthermore,
e believe that the discrepancies between model and experimental

esults may be partially attributed to the fact that we have used the sim-
lified ECM with representative parameters for both electrodes at large.
lthough we consider that the possibility to parameterize the model

rom frequency-domain data constitutes a qualitative advantage over
tandard ECMs, additional accuracy would be gained if the complete
CM accounting for both electrodes were employed instead, albeit at
he expense of a significantly more complex parameterization process.

Nevertheless, we understand that the simplified version is accurate
nough for many practical applications if used in conjunction with a
ual Fractional-Order Extended Kalman Filter [56], so as to simulta-
eously estimate SOC and circuit parameters as well as mitigate the
naccuracies that we discussed above. Moreover, an equivalent circuit
ormulation makes it simpler to incorporate more complex effects
nto the model. For instance, SOC-varying hysteresis, which is present
n many battery cells, may easily be added as a circuit element as
escribed in [20].

. Conclusions

In this article, a fractional-order equivalent circuit model has been
eveloped directly from the SPMe by obtaining approximate trans-
er functions corresponding to the solid and electrolyte diffusion, as
ell as the criteria for their validity. Next, the equivalence between

heir frequency response and circuit components is established via
ARC elements. Furthermore, a precise approximation of the reac-
ion overpotentials is also derived as a function of the previously
alculated concentrations. The proposed ECM is able to accurately
eplicate the theoretical behavior of the SPMe model, providing an
MS error below 1.46 mV for cell voltage, 0.28% for the surface
oncentration in the active material particles, 0.6% for the electrode-
veraged electrolyte concentration and 0.32 mV for the charge-transfer
verpotentials. Afterwards, the model is validated against experimental
ata by first identifying the equivalent circuit parameters from an
IS test and using them in a simplified version of the model. We
elieve the presented model constitutes an interesting alternative to
tandard ECMs because of its additional insight into internal states and
13

orrelation with physical parameters; whereas it also presents a reduced
Table A.4
Abbreviations.

Abbreviation Description

BMS Battery Management System
CC-CV Constant Current - Constant Voltage
CPE Constant-Phase Element
DFN Doyle–Fuller–Newman
DST Dynamic Stress Test
DTRA Discrete Time Realization Algorithm
ECM Equivalent Circuit Model
EIS Electrochemical Impedance Spectroscopy
Gr Graphite
NMC811 Nickel–Manganese–Cobalt (811)
OCP Open Circuit Potential
OCV Open Circuit Voltage
SPM Single-Particle Model
PDE Partial Differential Equation
RMS Root Mean Square
RPT Reference Performance Test
SOC State Of Charge

computational complexity and a simpler parameterization with respect
to electrochemical models.
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Appendix A. Abbreviations

See Table A.4.

Appendix B. Nomenclature

Subscripts 𝑛, 𝑠, 𝑝, 𝑒 stand for negative, separator, positive and elec-
trolyte, respectively. A tilde (as in 𝑐𝑒) denotes variations with respect
to the initial/typical value, whereas an overline (as in 𝑐𝑒,𝑛) indicates an
electrode-averaged quantity (see Table B.5).
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Table B.5
Nomenclature.

Symbol Description (Units)

𝐿𝑛∕𝑠∕𝑝 Electrode/Separator thickness (m)
𝑅𝑛∕𝑝 Active material particle radius (m)
𝐷𝑛∕𝑝 Solid diffusivity (m2∕s)
𝜖𝑛∕𝑝 Active material volume fraction in electrode
𝑐𝑛∕𝑝,𝑚𝑎𝑥 Maximum lithium concentration in active material particle (mol∕m3)
𝜎𝑛∕𝑝 Electrode conductivity (S∕m)
𝜖𝑒,𝑛∕𝑠∕𝑝 Electrode/Separator porosity
𝑚𝑛∕𝑝 Reaction rate ((A∕m2)(m3∕mol)1.5)
𝑐𝑒,𝑡𝑦𝑝 Typical electrolyte concentration (mol∕m3)
𝐷𝑒 Electrolyte diffusivity (m2∕s)
𝜅 Electrolyte conductivity (S∕m)
𝑡+ Cation transference number
𝑏 Bruggeman coefficient
𝐴 Electrode area (m2)
𝑈𝑒𝑞 Equilibrium potential (V)
𝜂𝑐 Overpotential due to electrolyte concentration gradients (V)
𝜂𝑟 Charge transfer overpotential (V)
𝛥𝛷𝑒 Ohmic losses in the electrolyte (V)
𝛥𝛷𝑠 Ohmic losses in the solid (V)
𝑂𝐶𝑃𝑛∕𝑝 Open Circuit Potential of Positive/Negative electrodes (V)
𝜒𝑛∕𝑝 Normalized active material lithium concentration
𝐹 Faraday’s constant (C∕mol)
𝑅 Universal gas constant (J∕K mol)
𝑇 Temperature (K)
𝑅𝑐𝑡 Charge-transfer resistance (Ω)
𝑄 Cell capacity (Ah)
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