Afficher la notice abrégée

dc.contributor.authorVecil, Francesco
dc.contributor.authorMantas Ruiz, José Miguel 
dc.contributor.authorAlonso‑Jordá, Pedro
dc.date.accessioned2023-05-17T07:12:37Z
dc.date.available2023-05-17T07:12:37Z
dc.date.issued2023-04-23
dc.identifier.citationVecil, F., Mantas, J.M. & Alonso-Jordá, P. Efficient GPU implementation of a Boltzmann-Schrödinger-Poisson solver for the simulation of nanoscale DG MOSFETs. J Supercomput (2023). [https://doi.org/10.1007/s11227-023-05189-0]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/81597
dc.description.abstract81–102, 2019) describes an efficient and accurate solver for nanoscale DG MOSFETs through a deterministic Boltzmann-Schrödinger-Poisson model with seven electron–phonon scattering mechanisms on a hybrid parallel CPU/GPU platform. The transport computational phase, i.e. the time integration of the Boltzmann equations, was ported to the GPU using CUDA extensions, but the computation of the system’s eigenstates, i.e. the solution of the Schrödinger-Poisson block, was parallelized only using OpenMP due to its complexity. This work fills the gap by describing a port to GPU for the solver of the Schrödinger-Poisson block. This new proposal implements on GPU a Scheduled Relaxation Jacobi method to solve the sparse linear systems which arise in the 2D Poisson equation. The 1D Schrödinger equation is solved on GPU by adapting a multi-section iteration and the Newton-Raphson algorithm to approximate the energy levels, and the Inverse Power Iterative Method is used to approximate the wave vectors. We want to stress that this solver for the Schrödinger-Poisson block can be thought as a module independent of the transport phase (Boltzmann) and can be used for solvers using different levels of description for the electrons; therefore, it is of particular interest because it can be adapted to other macroscopic, hence faster, solvers for confined devices exploited at industrial level.es_ES
dc.description.sponsorshipProject PID2020-117846GB-I00 funded by the Spanish Ministerio de Ciencia e Innovaciónes_ES
dc.description.sponsorshipProject A-TIC-344-UGR20 funded by European Regional Development Fund.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSemiconductor physicses_ES
dc.subjectDeterministic mesoscopic modelses_ES
dc.subjectParallel heterogeneous systemses_ES
dc.subjectGPU computinges_ES
dc.subjectSchrödinger-Poisson systemes_ES
dc.subjectParallelization of numerical algorithmses_ES
dc.titleEfficient GPU implementation of a Boltzmann‑Schrödinger‑Poisson solver for the simulation of nanoscale DG MOSFETses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s11227-023-05189-0
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional