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Abstract
A previous study by  Mantas and Vecil (Int J High Perform Comput Appl 34(1): 
81–102, 2019) describes an efficient and accurate solver for nanoscale DG MOS-
FETs through a deterministic Boltzmann-Schrödinger-Poisson model with seven 
electron–phonon scattering mechanisms on a hybrid parallel CPU/GPU platform. 
The transport computational phase, i.e. the time integration of the Boltzmann equa-
tions, was ported to the GPU using CUDA extensions, but the computation of the 
system’s eigenstates, i.e. the solution of the Schrödinger-Poisson block, was parallel-
ized only using OpenMP due to its complexity. This work fills the gap by describing 
a port to GPU for the solver of the Schrödinger-Poisson block. This new proposal 
implements on GPU a Scheduled Relaxation Jacobi method to solve the sparse lin-
ear systems which arise in the 2D Poisson equation. The 1D Schrödinger equation 
is solved on GPU by adapting a multi-section iteration and the Newton-Raphson 
algorithm to approximate the energy levels, and the Inverse Power Iterative Method 
is used to approximate the wave vectors. We want to stress that this solver for the 
Schrödinger-Poisson block can be thought as a module independent of the transport 
phase (Boltzmann) and can be used for solvers using different levels of description 
for the electrons; therefore, it is of particular interest because it can be adapted to 
other macroscopic, hence faster, solvers for confined devices exploited at industrial 
level.
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1 Introduction

This paper comes as a completion of the work described in [27], in which a deter-
ministic and physically accurate solver for Double-Gate Metal Oxide Field-Effect 
Transistors (DG MOSFETs) was implemented on a high-performance platform 
in order to alleviate the computational weight of such a high-dimensional model. 
Nanoscale DG MOSFETs are a key element in modern integrated circuits, and their 
modeling and simulation aim at contributing to their downscaling following Moore’s 
law. Figure 1 sketches the geometry and spatial dimensions of the particular 2D DG-
MOSFET device.

The deterministic model consists of a set of collisional Boltzmann equations to 
describe electron transport inside the structure, and a 1D Schrödinger–2D Poisson 
block to compute the eigenstates, which read, in its dimensionless form (after a car-
tesian-to-ellipsoidal change of variables in the impulsion space) as:

where z ∈ [0, 1] is the electron confinement dimension (transversal dimension) and 
x ∈ [0, 1] is the electron transport dimension (longitudinal dimension), w ∈ [0,∞[ 
is a dimensionless energy, � ∈ [0, 2�[ is the azimuthal angle, � ∈ {0, 1, 2} indexes 
the valley (we consider three valleys in the silicon band structure) and p ∈ {0,… , 5} 
indexes the subband (energy level).

Here, ��,p(t, x,w,�) is the probability of finding an electron of the �th valley, pth 
subband, at time t, at position x, with energy-angle (w,�) in the 2D impulsion space.

The presence of several valleys inside the Si band structure, plus the confine-
ment due to the oxide layers make that we have as many Boltzmann Transport 
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Fig. 1  Geometry and spatial dimensions of the nanoscale 2D DG-MOSFET
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Equations (BTEs) (1) as (�, p)-pairs; for each BTE, the electrons are advected 
through the fluxes given by

where ��,p(x) are the energy levels, �� is the Kane’s non-parabolicity factor for the 
�th valley, and mx,� is the electron effective mass along dimension x for the �th valley 
(see Appendix A for the details about �� and mx,�).

The scattering operator Q�,p[�] describes the electron–phonon interactions and 
s�(w) is a given function due to the change of variables in the impulsion space. 
Refer [27, 38] for the details about these terms.

In the Schrödinger equations (2), which describe the confinement, ��,p(x, z) are 
the wave functions and V(x,  z) is the electrostatic potential. Additionally, Vc(z) 
represents the MOSFET’s confinement potential and mz,� is the electron effec-
tive mass along dimension z for the �th valley (see Appendix A for the details 
about Vc(z) and mz,� ). Since dimension x acts only as a parameter, we have to 
solve as many eigenproblems as Si valleys times the discretization points along 
the x-dimension.

In the Poisson equation (3), the divergence and the gradient operators are meant 
for both the transport and the confinement dimensions (for (x, z)). The surface den-
sity ��,p and the volume density N in (3) are given by:

In (3), �R represents the dielectric constant and ND(x, z) is the doping profile which 
takes into account the injected impurities in the semiconductor lattice (see Appendix 
A for the details about �R and ND(x, z)).

The numerical solver described in [27] fully ports onto GPU the transport phase 
(called BTE phase) where the Boltzmann Transport Equations (BTEs) (1) are solved, 
while the goal of the present paper is to describe how we fully port onto GPU the 
phase corresponding to the solution of the Schrödinger-Poisson block (2)-(3) (called 
iter phase). We hence achieve a twofold improvement:

– to exploit the higher computational power of modern GPUs to accelerate this 
computational phase and
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– to avoid definitively costly data transfer between the host and the device RAM 
in the heterogeneous platform.

In order to solve the Schrödinger-Poisson block (2)-(3), whose input is the sur-
face densities ��,p(x) and whose outputs are the energy levels ��,p(x) , the wave 
functions ��,p(x, z) and the electrostatic potential V, a Newton-Raphson iterative 
algorithm is used, as was the case in the previous works (we address the reader to 
[27] and references therein for more details). An iteration in the Newton-Raphson 
algorithm consists of two main computational phases, which will be described 
separately in the following (see Fig. 2): 

a) Updating of the guess for the potential V through a Poisson-like equation (unlike 
the Poisson equation (3) it contains an additional non-local term). The linear sys-
tem deriving from the Poisson-like equation, and whose solution is the update for 
the guess on the potential V, is solved by means of a Scheduled Relaxation Jacobi 
(SRJ) scheme [2, 3, 39]: it consists of a sequence of relaxed Jacobi schemes with 
different relaxation factors, constructed in such a way to boost convergence to the 
solution.

b) Updating of the eigenstates {��,p(x)} and {��,p(x, z)} through the Schrödinger equa-
tion (2). The computation of the energy levels {��,p(x)} , i.e. the eigenvalues of the 
Schrödinger matrix, is achieved by using a multi-section algorithm [24] in the 
initial time step and a Newton-Raphson iterative algorithm in the following steps. 
Once the energy levels have been computed, the wave-vectors {��,p(x, z)} , which 
are the eigenvectors of the Schrödinger matrix, are computed by means of the 
Inverse Power Iterative Method (IPIM) [16], which in turn exploits the Thomas 
Algorithm [40] for the solution of the tridiagonal linear systems appearing at each 
iteration.

The parallel implementation of the numerical solution for the Schrödinger-Pois-
son block to simulate semiconductor devices has been tackled using different 
approaches and programming technologies. Initially, numerical solvers for shared-
memory parallel architectures were derived using OpenMP [10]. In this way, an 
OpenMP implementation of a numerical solver for a drift-diffusion-Schrödinger-
Poisson model is described in [33] and a 2D multi-subband ensemble Monte Carlo 
simulator of 2D MOSFET devices which solves the Poisson-Schrödinger block is 
described in [37]. Subsequently, versions of solvers of the Poisson-Schrödinger 
block for distributed-memory machines were obtained using the Message Passing 
Interface (MPI) to describe the interprocessor communication. Thus, the develop-
ment of the nanoelectronics modeling tool NEMO5 [35] includes a Schrödinger-
Poisson simulation and the parallelization of the simulations in NEMO5 is based 
on geometric partitioning techniques using MPI and several portable open-source 
packages. A parallel 1D Schrödinger-3D Poisson solver is implemented with a 
Gummel iterative method [17] using MPI and the PETSC library [5, 6] in [20]. In 
[22], a parallel implementation to simulate a metal-oxide-semiconductor (MOS) 
device, where a set of 1D Schrödinger-Poisson equations are solved, is described. 
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In this implementation, a parallel divide-and-conquer algorithm is developed to 
solve the Schrödinger equation while the Poisson equation is solved with a paral-
lelization of a monotone iterative method. Additionally, an MPI implementation 
of a resolution scheme of 2D Schrödinger equation-based corrections compatible 
with an existing parallel drift-diffusion model was derived in [14] to simulate 3D 
semiconductor devices in the simulation framework VENDES [34].

Fig. 2  Structure of the iterative solver for the Schrödinger-Poisson block. Two main phases appear: the 
update of the electrostatic potential V, and the diagonalization of the Schrödinger matrix to keep consist-
ency with V 
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The present work is of interest also for other kinds of solvers which also require 
the solution of the Schrödinger-Poisson block but using a less accurate description 
of the carriers in nanoscale semiconductors. The solver for the Schrödinger-Poisson 
equations, seen as a blackbox, receives as input the surface electron densities and 
returns as output the eigenstates, and in particular the force field that drives the elec-
trons along the device thanks to the applied voltage. Therefore, this machinery and 
its efficient implementation on CUDA-enabled platforms, can be adapted to macro-
scopic models, that are in general preferred in industrial simulations because of their 
lower computational cost, like drift-diffusion solvers [13, 19, 29, 33], Monte Carlo 
solvers [12, 32, 37], solvers based on the maximum-entropy-principle energy trans-
port model [8, 26] and Spherical Harmonics Expansion (SHE) solvers [21].

The paper is organized as follows: in Sect. 2, we summarize the model and the 
equations on which we focus; in Sect. 3, we describe the solvers and the strategy 
implemented to achieve a solution of the Poisson-like equation on GPU; in Sect. 4, 
we describe the solvers and the procedure employed to compute the eigenstates on 
GPU; in Sect. 5, we show the numerical results we have obtained on a dual proces-
sor server equipped with powerful modern GPUs; in Sect. 6, we draw some conclu-
sions and sketch the future work in this promising research line.

2  The Schrödinger‑Poisson solver

From an algorithmical point of view, the Schrödinger-Poisson block (2)-(3) receives 
as entry the surface densities {��,p} and returns as result the energy levels 

{
��,p

}
 , 

the wave vectors 
{
��,p

}
 and the electrostatic potential V [7, 27, 38], such as it is 

shown in Fig. 2. In this figure, � ∈ {0, 1, 2} denotes the valley, p ∈ {0,… ,Nsbn − 1} 
denotes the subband (we consider Nsbn = 6 ), i = 0,… ,Nx − 1 denotes the index for 
a discretization point in the longitudinal dimension (x) of the physical 2D device, 
being Nx the number of discretization points in that dimension, j = 0,… ,Nz − 1 
represents an index for a discretization point in the transversal dimension (confined) 
of the device ( Nz is the number of discretization points in that dimension) and s 
denotes the particular stage ( s = 0, 1, 2 ) of the third-order Total-Variation Diminish-
ing Runge–Kutta method [9] used for time integration.

From now on, we refer to the energy levels 
{
��,p

}
 as the eigenvalues (of the 

Schrödinger matrix) and the wave vectors 
{
��,p

}
 as the eigenvectors.

Equations (2)-(3) have to be seen as a block because:

– The 1D steady-state Schrödinger equation (2) takes as entry the potential {Vi,j} 
and returns as many eigenvalues 

{
��,p

}
 and corresponding eigenvectors 

{
��,p

}
 as 

needed for the sake of precision, and this must be done for each fixed position xi 
and each fixed band � ∈ {0, 1, 2} . As an example, in our solver, by using Nx = 65 
and Nsbn = 6 , this means that we have to compute 1170 eigenvalues and eigen-
vectors.
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– The 2D Poisson equation (3) receives as input the eigenvectors {��,p,i,j} and pro-
vides as output the potential {Vi,j}.

So, as can be seen, the output of (2) is the input of (3) and vice versa. In the follow-
ing we describe the strategy to solve this block.

The idea is to restate (3) as seeking for the zero of functional

under the constraints of the Schrödinger equation (2) via a Newton-Raphson itera-
tive scheme:

Obviously, stage k + 1 is a refinement of the previous stage k. The derivative is 
meant in a directional sense (Fréchet derivative). Details of the computations can be 
found in [7].

The scheme is sketched in Fig.  2: starting from an initial guess, we refine the 
guess on the potential, and keep consistency with the eigenstates.

From a computational point of view, this means that we have to be prepared for 
an alternate solution of the Schrödinger eigenproblem (2) and the linear system (5). 
The strategies to deal with this process are described in the following.

2.1  Schrödinger diagonalization

We can rewrite the steady-state Schrödinger equation in terms of the V-dependent 
linear operator L:

We wish to compute the first Nsbn eigenvalues and relative eigenvectors (we recall 
they will be equivalently referred to as energy levels and wave functions).

In order to do this, we take into account the uniform grid described in [27] for the 
spatial dimensions (x and z) and discretize the operator using finite differences. As a 
result, a symmetric tridiagonal matrix of order n ∶= Nz − 2 is obtained:
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being: for j = 1,… ,Nz − 2

the elements in the diagonal, and for j = 1,Nz − 3

the elements in the sub-diagonal (and the super-diagonal).
The values of the effective masses mz,� , for the particular case of the DG MOSFET 

device, depend on the material:

From this matrix we extract by some method the first (lowest) Nsbn eigenvalues {
��,p,i

}
p∈{0,…,Nsbn−1}

 and relative eigenvectors 
{
��,p,i,j

}
(p,j)∈{0,…,Nsbn−1}×{0,…,Nz−1}

.
We take into account the boundary condition

and the normalization of the eigenvectors

2.2  Evaluation of the directional derivative and construction of the linear system

One stage of the Newton-Raphson scheme on (4) translates into solving (5). (More 
details about the derivation can be found in [7].) This scheme boils down to the linear 
system on V (k+1)

where
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(8)L(k) V (k+1) = R(k),
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being A(k)
(x, z, �) ∶= A[V (k)](x, z, �) basically the directional derivative of the den-

sity N(k) ∶= N[V (k)] [15].

2.2.1  Evaluation of the directional derivative (Fréchet derivative)

The evaluation of A(k)
(x, z, �) at the grid points reads:

We recall that, here, the surface densities {�s+1
�,p,i

} are the entry for the whole 
Schrödinger-Poisson block, seen as a blackbox, where s indexes the external 
Runge–Kutta stage governed by the time integrator, while index k refers to the New-
ton-Raphson stage.

2.2.2  Construction of the linear system

The Laplacian in the linear operator (9) reads

and is discretized using the following finite-difference approximation:

The integral is discretized by means of trapezoid rule

For the right hand side R(k) , the integral is computed in a similar way to (12), and the 
density is simply

(9)
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As for the boundary conditions, Dirichlet is imposed at metallic contacts (source, 
drain and the two gates), while homogeneous Neumann is taken elsewhere.

As a remark, these Dirichlet conditions at the source and drain contacts represent 
the potential applied through the device, and the Dirichlet conditions applied at the 
gates represent the control on the opening and closing of the channel, thus switching 
the device between the on and the off phases.

3  Highly‑parallel methods for the linear system

The matrix L(k) representing the linear system (8) is of order Nx × Nz , and contains 
Nx square blocks of size Nz on the diagonal.

An approach to solve this linear system is to employ strategies to significantly 
accelerate the convergence of Jacobi method without losing its simplicity and local-
ity [2, 30, 39]. Following this approach, in this work, we have implemented on GPU 
a Scheduled Relaxation Jacobi (SRJ) [2, 39] method to solve efficiently this type 
of systems. SRJ methods extend the Jacobi method for linear systems which result 
from elliptic PDEs and present several important advantages for our particular case:

– they exhibit excellent convergence behaviour while preserving the simplicity and 
the straightforward parallelization of Jacobi method,

– they are particularly suitable for linear systems which result from discretizing 
Poisson-like PDEs and

– they do not require advanced preconditioning (we can use inverse diagonal as in 
the Jacobi iteration).

An alternative approach would be to use Krylov subspace iterative methods such 
as the conjugate gradient (CG) and Generalized Minimal Residual (GMRES) meth-
ods [31]. However, these methods have a more complex implementation than the 
Jacobi method, and require the use of effective preconditioners to ensure fast con-
vergence, where the preconditioners usually increase notably the computational cost 
and may involve significant effort for parallelization. Moreover, in [30] it is shown 
that approaches based on accelerating the Jacobi iteration can be an efficient alterna-
tive to the Krylov subspace methods.

3.1  The Scheduled Relaxation Jacobi (SRJ) method

The Jacobi method for the solution of a linear system provides poor convergence 
rate but exhibits a high concurrency degree, as each value of the vector solution can 
be updated totally independently from all the other values of the vector solution.

N
(k)

i,j
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∑
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∑
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|||�
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.
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Suppose, we have to solve the system Au = b , where A =
(
aij
)
N×N

 
( i = 0, ...,N − 1, j = 0, ...,N − 1 ) is a square matrix of order N, b a vector of size N and 
D is the diagonal component of A ( D = diag

(
a00, a11,… , aN−1N−1

)
).

A classical Jacobi iteration can be rewritten in vector form [1] in order to exploit the 
matrix–vector product operation:

A significant acceleration of the Jacobi algorithm can be obtained by applying the 
Scheduled Relaxation Jacobi (SRJ) method. The SRJ method extends the classical 
Jacobi method by introducing P different relaxation factors 𝜔i > 0, i = 1,… ,P . In 
the SRJ method, one relaxed Jacobi step with parameter �i has the following form:

In SRJ, we complete several cycles until reaching convergence. At each cycle, we 
perform M relaxed Jacobi steps as (13) where

being qi the number of times we apply the parameter �i.
Therefore, a SRJ cycle consists in defining sequences of M relaxed Jacobi steps. In 

our experiments, we have obtained good results with P = 7 cycles with M = 93 , using 
the following relaxation parameters:

In [2], one can obtain optimal parameters for �i, i = 1,… ,P for several values of 
both the number of steps P and the number of grid points (taking into account a 
discretization using 2nd-order central differences of a 2D Laplace equation on a 
uniform grid). In particular, we have used the values for the case P = 7 steps and 
N = 32 points (N must be less than max(Nx,Nz) ), for which we have experimentally 
obtained very good convergence results. The parameters qi, i = 1,… ,P and M are 
easily inferred from the parameters �i, i = 1,… ,P (also shown in [2]) describing the 
proportion of iterations in which a given weight �i is applied over the total number 
of iterations of each cycle.

take u as initial guess

repeat u ⟵ u + D
−1
(b − Au) until convergence.

(13)u ⟵ u + �i D
−1
(b − Au).

M =

P∑
i=1

qi,

(�1, q1) = (370.035, 1) (�2, q2) = (167.331, 2)

(�3, q3) = (51.1952, 3) (�4, q4) = (13.9321, 7)

(�5, q5) = (3.80777, 13) (�6, q6) = (1.18727, 26) (�7, q7) = (0.556551, 41).
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3.2  Implementation details

Algorithm 1 describes the CPU-GPU implementation of the SRJ method. As initial 
value for vector u

0
 , we use the last known value for the potential vector V (obtained 

in the previous Newton-Raphson iteration or in the previous Runge-Kutta stage).
The selection of the next �i in a SRJ cycle does not follow the natural sequence 

of ascending order where �1 is applied q1 times, then �2 is applied and so on, but the 
over-relaxation Jacobi steps (with 𝜔i > 1 ) are evenly spaced over the SRJ cycle to 
avoid overflow in the numerical experiments (see [39] for more details).

To implement each SRJ step (13) in CUDA we need, among others, a CUDA ker-
nel to perform the sparse matrix–vector product

This CUDA kernel uses one-dimensional CUDA blocks and takes into account the 
narrow-banded structure of the sparse matrix A . In this kernel, the computation of 
the i-th element of the vector x (by performing the dot product of the i-th row of 
the sparse matrix A by the vector u

0
 ) is computed by a different CUDA warp (see 

Fig. 3). We store the matrix A in global memory as a rectangular array whose row 
dimension is equal to the bandwidth of A . We use one-dimensional CUDA blocks 
where each CUDA block computes B

32
 elements of x , being B the block size. Initially, 

all the warps in a CUDA block cooperate to read, in a coalescent way, the required 
values of u

0
 and load them in a shared-memory array s_u . Then, the j-th warp in the 

k-th CUDA block read the corresponding non-zero values in the row t = kB

32
+ j of A 

and the affected values s_u in order to compute the t-th element of x . For this, each 

(14)x = A ⋅ u
0
.
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thread in the j-th warp computes one partial value and all the threads in the warp 
will cooperate following a reduction algorithm based on a warp shuffle operation 
[23], to add efficiently their previously computed values. In particular, we have used 
the operation __shuffle_xor_sync (we assume a compute capability higher or 
equal than 3.x) to perform the addition at warp level.

The components of the vector x which are obtained by each block are stored in a 
shared-memory array s_x to be written coalescently in the global memory vector x.

In our implementation of SRJ, the system is preconditioned by left-multiplying by 
D

−1 in such a way that the matrix of the linear system contains only values 1 on the 
diagonal.

We use another CUDA kernel, which also uses one-dimensional CUDA blocks, to 
complete the SRJ step by computing the residual vector

and updating the next approximation to the solution

In order to control the convergence after completing an SRJ cycle, we implement an 
efficient CUDA reduction algorithm based on [18, 25] to jointly perform the infinity 

(15)x = b − Au
0

(16)u
1
= u

0
+ �i x.

Fig. 3  Matrix–vector product: x = A ⋅ u
0
 . Each CUDA warp computes one element of the output vector 

x
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norm of two vectors: the residual vector ( |b − Au
0
|∞ ) and the new approximation 

( |u
0
|∞ ). In the reduction CUDA kernel, one half of the CUDA block processes a 

chunk of the residual vector and the other half processes the corresponding chunk of 
the other vector.

4  Implementation strategies: Diagonalization of the Schrödinger 
matrix

We need to compute the lowest Nsbn eigenvalues and relative eigenvectors of matrix 
L�,i in (6). It is known that for a tridiagonal symmetric matrix like L�,i , the character-
istic polynomial p(X) can be computed via a recursive sequence of polynomials [36]:

such that p(X) = pn(X) . In order to seek for the zeros of this polynomial, we shall 
employ two strategies: either a multi-section iterative algorithm (a generalization 
of the bisection algorithm) or a Newton-Raphson iterative algorithm. The first one 
is extremely robust, can unconditionally provide selected eigenvalues, but is costly, 
whilst the second one is faster but needs proper seeding. Therefore, the strategy will 
be the following: at the first step of the time evolution we shall use the multi-section 
algorithm; after that, we shall switch to Newton-Raphson.

4.1  The multi‑section algorithm for eigenvalues

The bisection algorithm is a well-known tool for computing eigenvalues, described, for 
instance, in [11, 36].

In our case, instead of using bisection, we can divide the interval into an arbitrary 
number of sub-intervals, which we shall call Nmulti in the following. If we think of it in 
a sequential way, the algorithm is less efficient than usual bisection ( Nmulti = 2 ); nev-
ertheless, this approach could be advantageous on a GPU platform because it better 
exploits parallelism: we can compute concurrently the � function

at all the intermediate points, and hence use fewer iterations to converge to the 
desired accuracy. We recall that polynomials {pj}j=0,…,n represent the (reversed, 
backward indexed) Sturm chain (17), for which the following result holds: let � a 
real number, then the number of zeros in the interval ] − ∞, �[ is given by �(�) . 
Suppose that the eigenvalues are ordered 𝜖0 < 𝜖1 < 𝜖2 < ⋯ < 𝜖n−1 . As eigenvalue �p 
corresponds to the (p + 1)th zero of polynomial p, then

(17)

p0(X) = 1

p1(X) =
(
d0 − X

)

pj(X) =
(
dj−1 − X

)
pj−1(X) − e2

j−2
pj−2(X) for 2 ≤ j ≤ n,

�(�) ∶= number of sign changes in
(
pn(�), pn−1(�),… , p1(�), p0(�)

)

(18)𝜖p < 𝜉 ⟹ 𝜎(𝜉) ≥ p + 1 and 𝜖p > 𝜉 ⟹ 𝜎(𝜉) ≤ p.
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The situation is sketched in Fig. 4.
In order to implement the multi-section algorithm for Nmulti sub-intervals, we 

shall use the following magnitudes (all indices start from zero):

– Interval 
[
Ymin, Zmax

]
 is such that it contains all the eigenvalues, and 

L ∶= Zmax − Ymin . This interval can be easily be obtained via Gershgorin circle 
theorem.

– Integer n ∈ ℕ ⧵ {0} indexes the iteration of the multi-section algorithm.
– Array � inf

�,p,i
 of size Nvalleys × Nsbn × Nx represents a left-approximation of eigen-

value ��,p,i , in the sense that 

– ��,p,i,k of size Nvalleys × Nsbn × Nx × (Nmulti − 1) represents the number of sign 
changes at point 

So, the general view of the methods is:

The last instruction inside the loop part, i.e. instruction 7 of (19), requires a reduc-
tion, as we need to compute

to finally update

��,p,i ∈

]
� inf
�,p,i

, � inf
�,p,i

+
L

(Nmulti)
n+1

[
.

��,p,i,k ∶= � inf
�,p,i

+ (k + 1)
L

(Nmulti)
n+1

.

(19)

init

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 Compute Gershgorin circles
�
Y𝜈,i, Z𝜈,i

�
on the GPU

2 Compute minimum Ymin and maximum Zmax and let L = Zmax − Ymin

3 Inizialize 𝜖inf
𝜈,p,i

= Ymin

4 Compute the number of iterations niters ∶=

⎢⎢⎢⎢⎣

ln
�

L

𝜀tol

�

ln
�
Nmulti

�
⎥⎥⎥⎥⎦
+ 1

loop

⎧
⎪⎨⎪⎩

5 Loop: for
�
n = 0;n < niters;n ← n + 1

�
6 Compute 𝜎𝜈,p,i,k on the GPU

7 Update 𝜖 inf
𝜈,p,i

on the GPU

k̃ ∶= max
{
k ∈ {−1, ...,Nmulti − 2} such that 𝜎𝜈,p,i,k ≤ p

}

Fig. 4  Multi-section algorithm 
for eigenvalues. The discontinu-
ity points of function � identify 
the eigenvalues
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4.1.1  Implementation details

We use multi-section with 32 points, i.e. with Nmulti = 33 . It is set like this so that 
we shall make each warp take care of updating one value of ��,p,i . As Nsbn = 6 , it 
seems reasonable to use either 1 or 2 or 3 or 6 warps per block, to load only one 
matrix L�,i per block. Blocks, therefore, will also be of size {32, 64, 96, 192} . Let Nw 
the number of warps per block, the block will be of size 32 × Nw . As dimensions are 
ordered i > 𝜈 > p , the 32 × Nw threads will take care of computing (for fixed (�, i))

By using a device of Compute Capability (CC) higher or equal than 3.x, we can 
exploit warp shuffle functions to perform the reduction (19)-7 at warp level. In par-
ticular, we use __shuffle_xor_sync to compute the maximum k̃ of a vector ��,p,i,⋅ 
stored in shared memory and containing

in such a way that we can update � inf
�,p,i

 following (20).
In order to perform a coalescent reading from global memory of matrix L�,i , 

whose entries are used several times by each thread, we use shared memory. Matrix 
L is stored as described in Fig. 5, so that each block loads SCHROED_MATRIX_
ROW elements, i.e. 128 doubles with our standard parameters, out of which only 125 
are really useful and 3 are just used for padding with zeros.

(20)𝜖 inf
𝜈,p,i

⟵ 𝜖 inf
𝜈,p,i

+
(
k̃ + 1

) L

(Nmulti)
n+1

.

{
��,p,i,k

}31

k=0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

0

,
{
��,p+1,i,k

}31

k=0
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

1

, ...,
{
��,p+Nw−1,i,k

}31

k=0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nw−1

.

��,p,i,k =

{
k if ��,p,i,k ≤ p

−1 otherwise

Fig. 5  Schrödinger matrices. Storage format of matrices L
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4.2  Newton‑Raphson iterative method for eigenvalues

The Newton-Raphson algorithm can also be found in the classical book [36]. In 
our implementation the iteration is controlled by the CPU, and each call to a kernel 
updates the guess for the eigenvalues. We use one CUDA thread per eigenvalue. The 
implementation does not need any sophisticated technique; therefore, we do not give 
further details here.

4.3  Inverse Power Iterative Method (IPIM) for the approximation 
of the eigenvectors

Once the eigenvalues have been computed, it is the turn of the relative eigenvectors. 
In order to do that, we have used the IPIM (aka “inverse iteration” algorithm) [16] 
to approximate the eigenvector ��,p,i of L�,i using the previously obtained eigenvalue 
��,p,i . The algorithm is described in Table 2.

We have to approximate Nvalleys × Nsbn × Nx eigenvectors (with Nz elements) 
using this algorithm. We have used a different CUDA thread T�,p,i to approximate 
the eigenvector ��,p,i . Each thread solves locally the tridiagonal linear system using 
the Thomas algorithm [40]. Since each tridiagonal coefficient matrix L�,i is sym-
metric, it is represented using two vectors with Nz − 2 double precision elements. 
Several CUDA threads work with the same coefficient matrix (threads T�,p,i with 
p ∈ {0,… , 5} , � = � and i = � use the matrix L� ,�).

We have implemented two different CUDA kernels to implement this algorithm 
on GPU:

– Kernel A, where these vectors are read from global memory for each value of k 
in Algorithm 2, and

– Kernel B, which stores these vectors in shared memory. In this version, all the 
vectors which are needed for the threads in a CUDA block are loaded coales-
cently from global memory.
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In both cases, we use one-dimensional CUDA blocks with 32 threads to avoid exces-
sive spilling of available registers in the multiprocessor.

Table 1 shows the average runtime (measured in seconds) spent by both CUDA 
kernels in a time step for several values of Nz , using grid Nx = 65 , Nw = 300 , 
N� = 48 ( Ndim ( dim ∈ {x, z,w,�} ) is the number of discretization points for dimen-
sion dim in the grid), CFL condition 0.6, a source-drain voltage of 0.1 V and a 
source-gate voltage of 0.5 V. We can see that both kernels lead to very similar exe-
cution times. However, since kernel A achieves better times in all cases except for 
Nz = 129 , we have opted for this version.

5  Numerical results

We have analyzed the performance and accuracy of the parallel solver, focusing on 
the GPU implementation of the Schrödinger-Poisson block (herein called the iter 
phase).

5.1  Description of the platform and solvers

The numerical experiments have been performed on a computing server with dual 
Intel Xeon Silver 4210 CPUs (in total, 20 physical cores with a base frequency of 2.2 
GHz each and 40 logical processors) with 96 GB RAM, and 4 TB solid state hard 
drive. The system includes a NVIDIA Tesla V100 GPU (5120 cuda cores, 7 TFlops 
of double-precision peak performance and 32 GB DDR5 SDRAM) with CUDA 
Compute Capability (CC) 7.0 and an NVIDIA GeForce RTX 3090 GPU (5248 
cores, 556 GFLOPS of double-precision peak performance and 24 GB GDDR6X) 
with CUDA CC 8.6. The operating system is Linux Debian 10.9 with GCC version 
10.2.1 and the CUDA 11.2 runtime.

We have developed two implementations of the solver:

• OpenMP solver: This solver only exploits the cores of the CPUs in the platform 
by using OpenMP directives and functions (see [38] for additional details). In the 
experiments, this solver is run using 40 threads (two per physical core). To com-
pile the OpenMP solver, we have used the GNU compiler g++ version 10.2.1 
using the switches -fopenmp -O3 -m64 -use_fast_math.

Table 1  Average runtimes 
(seconds) spent by both CUDA 
kernels implementing IPIM 
scheme for one time step

N
z

Kernel A Kernel B 
(shared 
mem.)

33 .000266 .000272
49 .000366 .000520
65 .000503 .000557
97 .000960 .001060
129 .001520 .001470
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• CUDA solver: This heterogeneous code performs all the relevant comput-
ing phases on one of the available GPUs (Tesla V100 or RTX 3090) under the 
control of a CPU thread which invokes the corresponding CUDA kernels. In 
the compilation with nvcc, we have used the switches -O3 -m64 -use_
fast_math and the options necessary to generate PTX code and object code 
optimized to the particular GPU architecture.

In the OpenMP solver, we use exactly the same numerical methods as in the CUDA 
solver.

5.2  Experimental validation of convergence

The convergence of the Boltzmann-Schrödinger-Poisson solver has been experimen-
tally validated by studying the results obtained with different grids at t = 0.1 pico-
seconds using a CFL condition 0.6, a source-drain voltage of 0.1 V and a source-
gate voltage of 0.5 V. In order to avoid excessive complexity, two macroscopic 
magnitudes that capture characteristics of the solution at a time point are analyzed: 
the total current density j(x) and the total surface density �(x) . These magnitudes are 
computed as follows:

As reference solutions for these magnitudes, the numerical results obtained by the 
solver for a very fine grid, given by Nx = 129 , Nz = 129 , Nw = 600 and N� = 96 , are 
used, being Ndim ( dim ∈ {x, z,w,�} ) the number of discretization points for dimen-
sion dim in the grid.

For each magnitude, the reference solution is compared with respect to the 
numerical solutions obtained for several coarser grids. These coarser grids have 
fewer discretization points in all dimensions. Figure  6 shows how the numeri-
cal solutions of the quantities vary as the number of points in all grid dimensions 
increases. It is very evident that as grids with a higher number of points are used, the 
solution obtained is closer to the reference solution for both quantities.

5.3  General view

In Fig. 7, we draw the average runtime cost for one time step of both computational 
phases (BTE and iter) and also show the speedup obtained with both solvers (for the 
full simulation of one time step) with respect to the sequential version (for only one 
thread) of the OpenMP solver. These results have been obtained by averaging the 
execution time of 10 time steps using grid Nx = 65 , Nz = 65 , Nw = 300 , N� = 48 , 
CFL condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 
V.

For the OpenMP solver, the bottleneck is the integration of the Boltzmann 
Transport Equations (BTE phase). The port to GPU of this phase has already been 

j(x) = 2
∑
�,p

∫
+∞

w�=0 ∫
2�

��=0

a1
�
(w�,��)��,p(w

�,��) d�� dw�, �(x) = 2
∑
�,p

��,p(x).
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Fig. 6  Convergence to the reference solution ( 129 × 129 × 600 × 96 ). Numerical solutions at t = 0.1 ps 
for the total surface density and the total current density obtained with several grids

Fig. 7  Phases. Comparison of the cost of both computational phases between the OpenMP solver and the 
CUDA solver. The speedup is obtained for the full simulation of one time step using N

x
= 65 , N

z
= 65 , 

N
w
= 300 , N� = 48 , CFL condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 

V
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described in [27], where the iter phase was solved on the multiprocessor host plat-
form by using OpenMP. In the following, we shall analyze the impact of the CUDA 
port of this phase.

Table 2 shows the speedup obtained with both solvers with respect to the sequen-
tial version in the main computing phases (BTE and iter). We can observe that the 
speedup obtained on Tesla V100 GPU in the BTE phase is significantly higher 
than the one obtained on RTX 3090 GPU (416.4 on Tesla V100 and 57.5 on RTX 
3090). Conversely, for the iter phase, the CUDA solver on both GPUs achieves a 
closer speedup (129.6 on Tesla V100 and 93.2 on RTX 3090). We claim that this is 
because the BTE phase is much more intense in double-precision arithmetics than 
the iter phase and exhibits a higher degree of data parallelism (see section 5.4.1).

5.4  The iter phase

In Fig. 8, we sketch the cost of each computational section inside the iter phase and 
show the speedup obtained with respect to the sequential version of the OpenMP 
solver.

The dominant part in all cases is the solution of the linear system (8) (section 
iter.solvelinsys). The evaluation of the directional derivative (10) (section 
iter.Frechet) is the second costliest section in the OpenMP solver, but it is 
not so in the CUDA solver because it scales better than the implementations of the 
other sections. In the CUDA solver, the computation of the eigenstates (2) (section 
iter.eigen) also has a dominant role in the runtime. This section does not pro-
duce high runtime improvements on GPU because it does not exhibit a high arith-
metic intensity and the CUDA kernels for this section spend a long time accessing 
global memory and short time computing with those data (see information about the 
kernels cuda_tridiag_Thomas and cuda_eigenvalues_NR in Table  5). 
Finally, the construction of the linear system (section iter.constrlinsys) is 
clearly the least expensive part in the iter phase.

Figure 8 also shows that the runtimes obtained on both GPUs are similar in all 
the sections of the iter phase, except for the evaluation of the directional derivative 
where the Tesla V100 GPU achieves considerably shorter runtimes.

In Fig. 9, we sketch the speedups achieved by the CUDA solver (on both GPUs) 
and the OpenMP solver with respect to a sequential version of the OpenMP solver 
for each of these four main sections (inside the iter phase). Table 3 shows the par-
ticular data sketched in Fig.  9. These data confirm that the CUDA kernel for the 
evaluation of the directional derivative efficiently exploits the double-precision 

Table 2  Speedup obtained in the main computing phases with a typical grid ( 65 × 65 × 300 × 48 ), CFL 
condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 V

Phase 2-cores CPU 4-cores CPU 8-cores CPU 16-cores CPU RTX-3090 Tesla-V100

BTE 1.96 3.75 7.29 12.0 57.50 416.40
iter 1.88 3.43 5.98 8.4 93.2 129.6
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computational power of the Tesla V100 GPU. For the other sections, the exploita-
tion of the Tesla V100 power is not so efficient because of the much lower double-
precision arithmetic intensity.

5.4.1  Behavior of the CUDA kernels

Table 4 shows the average runtime (measured in microseconds) spent by the main 
CUDA kernels in the iter phase per time step.

More into details, we are analyzing the behavior of six kernels, playing a role in 
four computational phases:

– the phase computing the eigenstates (eigenvalues and eigenvectors) of the 
Schrödinger matrices, labeled iter.eigen, involves the CUDA kernels

– cuda_eigenvalues_NR for the computations detailed in Sect. 4.2;
– cuda_Tridiag_Thomas implementing the algorithm in Table 2;

– the phase computing the directional derivative, labeled iter.dirderiv, 
involves the CUDA kernel

– cuda_compute_frechet for the computation of (10);

Fig. 8  Iter. Comparison of the cost of the computational phases inside the iter phase between OpenMP 
and a full GPU execution, when it is used a the grid N

x
= 65 , N

z
= 65 , N

w
= 300 , N� = 48 , CFL condi-

tion 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 V
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Fig. 9  Speedups. Speedup of the main sections inside the iter phase with respect to a sequential version 
of the OpenMP solver, when it is used the grid N

x
= 65 , N

z
= 65 , N

w
= 300 , N� = 48 , CFL condition 

0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 V

Table 3  Speedups for the main 
sections inside the iter phase 
with a typical grid N

x
= 65 , 

N
z
= 65 , N

w
= 300 , N� = 48 , 

CFL condition 0.6, a source-
drain voltage of 0.1 V and a 
source-gate voltage of 0.5 V

Section 16-cores CPU RTX-3090 Tesla-V100

iter.eigen 11.27 65.80 120.81
iter.Frechet 11.39 145.46 1236.38
iter.solvelinsys 7.85 138.89 164.98
iter.constrinsys 1.45 14.64 17.56

Table 4  Total runtimes 
(microseconds) spent by the 
main CUDA kernels for one 
time step, when it is used 
the grid N

x
= 65 , N

z
= 65 , 

N
w
= 300 , N� = 48 , CFL 

condition 0.6, a source-drain 
voltage of 0.1 V and a source-
gate voltage of 0.5 V

CUDA kernel Per-step RTX3090 Per-step V100

cuda_eigenvalues_NR 245.1 205.4
cuda_tridiag_Thomas 774.8 576
cuda_compute_frechet 3994.6 322.2
cuda_constrlinsys 1055.2 692.1
cuda_matvec_product 6499.4 5194.5
cuda_update_x 1376.8 1496.7
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– the phase constructing the linear system, labeled iter.constrlinsys, 
involved the CUDA kernel

– cuda_constrlinsys for the computation of (11)-(12);

– the phase solving the linear system, labeled iter.solvelinsys, involves the 
CUDA kernels:

– cuda_matvec_product for the computation of (14);
– cuda_update_x for the computation of (15)-(16).

Additionally, a comparison of the most relevant CUDA kernels in the solver has been 
made, taking into account the throughtput achieved in the CUDA multiprocessors 

Table 5  Metrics provided by Nsight profiler. We have used: (1) = gpu__compute_memory_
throughput.avg.pct_of_peak_sustained_elapsed (2) = sm__throughput.avg.
pct_of_peak_sustained_elapsed 

CUDA Kernel Phase Time Time (1) for (1) for (2) for (2) for
RTX-3090 V100 RTX-3090 V100 RTX-3090 V100

cuda_phonons_loss BTE 2503.5 ms 166.7 ms 0.53 % 8.1 % 85.4 % 92.6 %
cuda_WENO_W BTE 365.4 ms 57.9 ms 10.3 % 66.5 % 86.1 % 76.7 %
cuda_WENO_PHI BTE 631.2 ms 44.9 ms 2.8 % 39.9 % 86.1 % 87.4 %
cuda_WENO_X BTE 315.6 ms 43.9 ms 10.9 % 73.6 % 85 % 36 %
cuda_phonons_gain BTE 128.2 ms 20.5 ms 1.4 % 10 % 84.1 % 31 %
cuda_compute_Wm1 BTE 6.6 ms 13.8 ms 8 % 5.6 % 8 % 2.5 %
cuda_pdftilde BTE 7.9 ms 8.7 ms 92 % 96.4 % 35 % 5.8 %
cuda_set_fluxes_a2 BTE 5.4 ms 7.0 ms 80.4 % 63.1 % 82 % 24.7 %
cuda_set_fluxes_a3 BTE 4.9 ms 7.0 ms 87.7 % 63.1 % 45 % 24.1 %
cuda_perform_RK_2_3 BTE 6.1 ms 6.6 ms 95.5 % 90.6 % 47.8 % 10 %
cuda_perform_RK_3_3 BTE 6.1 ms 6.5 ms 95.5 % 90.7 % 47.8 % 9.5 %
cuda_perform_RK_1_3 BTE 4.7 ms 4.8 ms 92.6 % 92 % 15.5 % 11.2 %
cuda_matrix_vector_
product

iter 65 ms 51.9 ms 37.2 % 50.5 % 54.1 % 17.5 %

cuda_update_x iter 13.7 ms 14.9 ms 4.2 % 4.3 % 1.8 % 0.5 %
cuda_constr_linsys iter 10.5 ms 6.9 ms 41.2 % 29.1 % 3.3 % 2.9 %
cuda_tridiag_Thomas iter 7.7 ms 5.7 ms 4.4 % 8.7 % 10.8 % 1.7 %
cuda_compute_frechet iter 39.9 ms 3.2 ms 3.3 % 48.6 % 84.7 % 77.2 %
cuda_eigenvalues_NR iter 2.4 ms 2.0 ms 1.8 % 2.6 % 17.9 % 1.6 %

Table 6  Averaged values for the 
metrics (1) and (2) at each phase 
(BTE and iter)

Phase (1) for 
RTX-3090 
(%)

(1) for V100 (%) (2) for 
RTX-3090 
(%)

(2) for V100 (%)

BTE 3.4 35.7 85 68.6
iter 22.1 36.6 51 14.1
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and in the memory access. For this purpose, we have used the NVIDIA Nsight 
Compute tools [28] to collect data about the following metrics: 

1. gpu__compute_memory_throughput.avg.pct_of_peak_sus-
tained_elapsed: measures the throughput of internal activity within caches 
and DRAM (as a percentage with respect to the peak throughput).

2. sm__throughput.avg.pct_of_peak_sustained_elapsed: meas-
ures the multiprocessor throughput assuming ideal load balancing across the mul-
tiprocessors of the GPUs (as a percentage with respect to the peak throughput).

Table  5 shows the values obtained for these metrics in the most relevant CUDA 
kernels of the phases iter and BTE. Table 6 shows the averaged values (taking into 
account the runtime of each CUDA kernel) of these metrics for each phase (BTE 
and iter) and GPU (RTX-3090 and Tesla V100). We can see that, for the Tesla V100 
GPU, while the memory throughput (metric 1) is similar for both phases, the mul-
tiprocessor throughput (metric 2) is considerably higher for the BTE phase than for 
the iter phase. This shows that the BTE phase performs a much higher number of 
arithmetic operations in double precision per data read than the iter phase.

Fig. 10  Scaling with different grids. Doubling the points along x-dimension. Grid N
x
= 129 , N

z
= 65 , 

N
w
= 300 , N� = 48 , CFL condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 

V
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5.5  Scaling with different grids

In this subsection, we analyze how the change in the number of discretization points 
at a particular dimension affects the runtime performance of the solvers. The main 
goal is to determine the role played by the different dimensions. Obviously, there 
are dimensions which affect more the performance because most of the numerical 
schemes depend strongly on those dimensions from the point of view of the algo-
rithmic complexity.

In Figs. 10, 11, 12 and 13, we double the points along dimensions x, z, w and � 
and observe how this modifies the speedup in the iter phase. It is observed that the 
iter phase does not really depend on w and weakly depends on � , and we actually 
see that the speedup obtained with respect to the speedup in Fig. 8 is very similar. 
The same applies to x, which acts as a parameter for this computational phase.

On the opposite, where we do observe a larger speedup is when we add points 
along the z-dimension: in Fig. 11, we remark a more significant speedup, because the 
GPU multiprocessors are better exploited by feeding them with a larger amount of 
computations. The number of discretization points in the z-dimension affects more 
strongly the computational cost because increasing this variable further increases 
the computational cost of the numerical methods related to confinement.

Table 7 shows the speedup obtained in the iter phase by both the OpenMP solver 
(using different number of threads) and the CUDA solver (on both GPUs) with 

Fig. 11  Scaling with different grids. Doubling the points along z-dimension. Grid N
x
= 65 , N

z
= 129 , 

N
w
= 300 , N� = 48 , CFL condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 

V
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respect to a sequential version of the OpenMP solver (for only one thread) when 
using different grids for the simulation of one time step. In this table, we can see 
how the speedup increases as the number of points in the grid increases, which 
shows the trends of scalability for the different solvers.

6  Conclusions and perspectives

In this work, a simulator of nanoscale DG MOSFETs which solves the Boltzmann-
Schrödinger-Poisson system performing all the computing phases on a NVIDIA 
GPU is described. Now all the computing phases of the simulator can be fully per-
formed on GPU and show good performance, and reasonable computational times, 
taking into account the huge computational cost of this deterministic solver.

The port to GPU of the iterative section, solving the Schrödinger-Poisson block, 
has required adapting to GPU many techniques and methods such as the Sched-
uled Relaxation Jacobi method, the multi-section algorithm and the inverse power 
iteration.

This CUDA implementation of the Schrödinger-Poisson block provides satisfac-
tory results, as it significantly reduces the execution times obtained on a modern 
dual processor server with 40 logical cores. As a result, we obtain one order of mag-
nitude speedup with the full GPU version on a Tesla V100 GPU and a very close 

Fig. 12  Scaling with different grids. Doubling the points along w-dimension. Grid N
x
= 65 , N

z
= 65 , 

N
w
= 600 , N� = 48 , CFL condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 

V



 F. Vecil et al.

1 3

speedup is also obtained on a RTX 3090 GPU, which is much less powerful for 
double-precision computing.

Regarding the future extensions of this exploratory research, several topics can 
be explored. Firstly, it would be of interest to test the techniques described here 
in another kind of solver, in particular in a macroscopic solver, which is a goal 
of great interest for the semiconductor industry as it could provide significant 
improvement for commercial TCAD simulators. Secondly, no Monte-Carlo solver 
for the Boltzmann-Schrödinger-Poisson system has been ported to GPU so far, at 
the best of our knowledge. It would be interesting to see how the performance of 
such numerical methods improves. Thirdly, on a broader scale, we are working 

Fig. 13  Scaling with different grids. Doubling the points along �-dimension. Grid N
x
= 65 , N

z
= 65 , 

N
w
= 300 , N� = 96 , CFL condition 0.6, a source-drain voltage of 0.1 V and a source-gate voltage of 0.5 

V

Table 7  Speedup obtained in the iter phase with different grids

N
x

N
z

N
w

N� 2-cores 
CPU

4-cores 
CPU

8-cores 
CPU

16-cores 
CPU

RTX-3090 Tesla-V100

33 33 150 24 1.71 2.80 3.76 4.38 20.13 18.79
49 49 225 36 1.85 3.28 5.33 6.63 52.75 61.79
65 65 300 48 1.88 3.42 5.98 8.39 93.23 129.61
97 97 450 72 2.06 3.82 7.06 11.48 153.03 207.50
129 129 600 96 1.90 3.44 6.22 11.68 154.80 215.81
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on improving the description of the MOSFET device at physical level, for exam-
ple by introducing other scattering phenomena into the collisional operator, and 
in particular the surface roughness and the Coulomb interaction. Additionally, 
devices composed of different materials and heterostructures can be simulated 
and, when the semiconductor device must be simulated in the 3D physical space, 
the high number of points of the resultant mesh suggests deriving an implementa-
tion for multiple GPUs.

A Information about several quantities of the numerical scheme

In this appendix we describe the value and magnitudes of several physical constants 
in Equations (2) and (3). Table 8 describes the values and units for the dielectric 
constant �R , the effective masses in the SiO2 region, the confinement potential and 
several auxiliary quantities. Table 9 describes the values and units for the Kane fac-
tor �̃�

𝝂
 and for the effective masses in the Si region.

Table 8  Values and units for several quantities

Description Value Unit

Confinement potential V
c
(z) in the SiO

2
 region 3.15 eV

Confinement potential V
c
(z) in the Si region 0 eV

�
R
 in the Si region 11.7 ×�

0

A
2

s4

Kg m3

�
R
 in the SiO

2
 region 3.9 ×�

0

A
2

s4

Kg m3

m
x,�

 and m
z,�

 in the SiO
2
 region 0.5 ×m

e
 Kg

N
D
 in source and drain regions 1026 m−3

N
D
 in the channel region 1018 m−3

N
D
 out of source, drain and channel regions 0 m−3

Electron mass: m
e 9.10938188 × 10−31 Kg

Vacuum dielectric constant: �
0 8.8541878176 × 10−12 A

2
s4

Kg m3

ElectronVolt: eV 1.60217653 × 10−19 J

Table 9  Values and units for the 
Kane factor and the effective 
masses ( m

x,�
 and m

z,�
 ) in the Si 

region

Valley Kane factor �̃�
𝝂 m

x,�

[
×m

e
Kg

]
m

z,�

[
×m

e
Kg

]

� = 1 0.5 eV
−1 0.98 0.19

� = 2 0.5 eV
−1 0.19 0.19

� = 3 0.5 eV
−1 0.19 0.98
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