Mostrar el registro sencillo del ítem

dc.contributor.authorTrigo-González, Mauricio
dc.contributor.authorCortés-Carmona, Marcelo
dc.contributor.authorMarzo, Aitor
dc.contributor.authorAlonso- Montesinos, Joaquín
dc.contributor.authorMartínez-Durbán, Mercedes
dc.contributor.authorLópez, Gabriel
dc.contributor.authorPortillo, Carlos
dc.contributor.authorBatlles, Francisco Javier
dc.date.accessioned2023-02-23T08:10:11Z
dc.date.available2023-02-23T08:10:11Z
dc.date.issued2023-01-31
dc.identifier.citationTrigo-González, M.; Cortés-Carmona, M.; Marzo, A.; Alonso-Montesinos, J.; Martínez-Durbán, M.; López, G.; Portillo, C.; Batlles, F.J. Photovoltaic Power Electricity Generation Nowcasting Combining Sky Camera Images and Learning Supervised Algorithms in the Southern Spain. Renew Energy 2023, doi: https://doi.org/10.1016/J.RENENE.2023.01.111es_ES
dc.identifier.urihttps://hdl.handle.net/10481/80168
dc.description.abstractThe alternation between cloudy and clear skies alters the photovoltaic production. This makes it necessary to anticipate these disturbances hours in advance for the correct operation of the electricity distribution plants and networks. In this paper, two short-term forecasting models (3 h) are developed to forecast the photovoltaic production in an integrated plant in the CIESOL building of the University of Almería. The methodology used is based on sky camera images and Artificial Intelligence techniques. Two models have been developed and compared applying artificial neural network (ANN) and support vector machine (SVM) techniques. The global irradiance predicted using sky camera images is used as an input variable in both models. In addition, the operational status of the plants has been included as an input parameter through the performance ratio. The results have shown that the errors made by ANN and SVM are very similar. For all sky conditions, the uncertainty of the production forecast differs by less than 2% from the uncertainty of the solar resource, which is the main source of error in the production models developed.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.subjectPhotovoltaic plantes_ES
dc.subjectNowcastinges_ES
dc.subjectSky camerases_ES
dc.subjectMachine learninges_ES
dc.subjectSolar resource assessmentes_ES
dc.titlePhotovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spaines_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1016/j.renene.2023.01.111
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem