• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Óptica
  • DO - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Óptica
  • DO - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photovoltaic power electricity generation nowcasting combining sky camera images and learning supervised algorithms in the Southern Spain

[PDF] Artículo (2.938Mb)
Identificadores
URI: https://hdl.handle.net/10481/80168
DOI: https://doi.org/10.1016/j.renene.2023.01.111
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Trigo-González, Mauricio; Cortés-Carmona, Marcelo; Marzo, Aitor; Alonso- Montesinos, Joaquín; Martínez-Durbán, Mercedes; López, Gabriel; Portillo, Carlos; Batlles, Francisco Javier
Editorial
Elsevier
Materia
Photovoltaic plant
 
Nowcasting
 
Sky cameras
 
Machine learning
 
Solar resource assessment
 
Fecha
2023-01-31
Referencia bibliográfica
Trigo-González, M.; Cortés-Carmona, M.; Marzo, A.; Alonso-Montesinos, J.; Martínez-Durbán, M.; López, G.; Portillo, C.; Batlles, F.J. Photovoltaic Power Electricity Generation Nowcasting Combining Sky Camera Images and Learning Supervised Algorithms in the Southern Spain. Renew Energy 2023, doi: https://doi.org/10.1016/J.RENENE.2023.01.111
Resumen
The alternation between cloudy and clear skies alters the photovoltaic production. This makes it necessary to anticipate these disturbances hours in advance for the correct operation of the electricity distribution plants and networks. In this paper, two short-term forecasting models (3 h) are developed to forecast the photovoltaic production in an integrated plant in the CIESOL building of the University of Almería. The methodology used is based on sky camera images and Artificial Intelligence techniques. Two models have been developed and compared applying artificial neural network (ANN) and support vector machine (SVM) techniques. The global irradiance predicted using sky camera images is used as an input variable in both models. In addition, the operational status of the plants has been included as an input parameter through the performance ratio. The results have shown that the errors made by ANN and SVM are very similar. For all sky conditions, the uncertainty of the production forecast differs by less than 2% from the uncertainty of the solar resource, which is the main source of error in the production models developed.
Colecciones
  • DO - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias