Mostrar el registro sencillo del ítem
On two tensors associated to the structure Jacobi operator of a real hypersurface in complex projective space
dc.contributor.author | Pérez Jiménez, Juan De Dios | |
dc.contributor.author | Pérez López, David | |
dc.date.accessioned | 2023-01-31T10:08:08Z | |
dc.date.available | 2023-01-31T10:08:08Z | |
dc.date.issued | 2022-12-29 | |
dc.identifier.citation | Pérez, J.D., Pérez-López, D. On two tensors associated to the structure Jacobi operator of a real hypersurface in complex projective space. Period Math Hung (2022). [https://doi.org/10.1007/s10998-022-00508-z] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/79469 | |
dc.description.abstract | A real hypersurface M in a complex projective space inherits an almost contact metric structure from the Kählerian structure of the ambient space. This almost contact metric structure allows us to define, for any nonzero real number k, the so-called k-th generalized Tanaka– Webster connection. With this connection and the Levi-Civita one we can associate two tensors of type (1,2) to the structure Jacobi operator Rξ of M.We classify real hypersurfaces in complex projective space for which such tensors satisfy a cyclic property. | es_ES |
dc.description.sponsorship | Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | k-th generalized Tanaka–Webster connection | es_ES |
dc.subject | Complex projective space | es_ES |
dc.subject | Real hypersurface | es_ES |
dc.subject | Lie derivative | es_ES |
dc.subject | Jacobi structure operator | es_ES |
dc.title | On two tensors associated to the structure Jacobi operator of a real hypersurface in complex projective space | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/s10998-022-00508-z | |
dc.type.hasVersion | VoR | es_ES |