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Abstract
A real hypersurface M in a complex projective space inherits an almost contact metric struc-
ture from the Kählerian structure of the ambient space. This almost contact metric structure
allows us to define, for any nonzero real number k, the so-called k-th generalized Tanaka–
Webster connection. With this connection and the Levi-Civita one we can associate two
tensors of type (1,2) to the structure Jacobi operator Rξ of M . We classify real hypersurfaces
in complex projective space for which such tensors satisfy a cyclic property.
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1 Introduction

Let (CPm, J , g), m ≥ 2, be the complex projective space with the Kählerian structure
(J , g), where J denotes its complex structure and g is the Fubini–Study metric of constant
holomorphic sectional curvature 4. Suppose that M is a connected real hypersurface inCPm

without boundary and denote by N a unit local normal vector field on M . Let ∇ be the
Levi-Civita connection on M and A the shape operator of M associated to N .

Let X be a vector field tangent to M . We write J X = φX + η(X)N , where φX is the
tangential component of J X and η(X) = g(X , ξ), ξ = −J N being the structure (or Reeb)
vector field on M . Then (φ, ξ, η, g) defines an almost contact metric structure on M . Using
this almost contact metric structure Cho [1], defined for any nonzero real number k, the
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k-generalized Tanaka–Webster connection on M , ∇̂(k), by

∇̂(k)
X Y = ∇XY + g(φAX , Y )ξ − η(Y )φAX − kη(X)φY

for any X , Y tangent to M . This generalizes the definition of Tanno’s generalized Tanaka–
Webster connection on a contact manifold, see [2–4].

The k-th Cho operator associated to the vector field X tangent to M will be given by

F (k)
X Y = g(φAX , Y )ξ − η(Y )φAX − kη(X)φY

for any Y tangent to M . Then, if L denotes a tensor field of type (1,1) on M , for any nonzero
real number k we can define a tensor field of type (1,2) on M , L(k)

F , by

L(k)
F (X , Y ) = [F (k)

X , L]Y = F (k)
X LY − LF (k)

X Y

for any X , Y tangent to M .
The torsion of the k-generalized Tanaka–Webster connection is given by T (k)(X , Y ) =

F (k)
X Y − F (k)

Y X , for any X , Y tangent to M . We consider the k-th torsion operator associated

to X , T (k)
X Y = T (k)(X , Y ). Then, if L is as above, we can define for any nonzero real number

k, another tensor field of type (1,2), L(k)
T , given by

L(k)
T (X , Y ) = [T (k)

X , L]Y = T (k)
X LY − LT (k)

X Y

for any X , Y tangent to M .
We will say that a real hypersurface M in CPm is Hopf if the structure vector field ξ is

a principal vector of the shape operator, i.e. Aξ = αξ , for a certain function α on M . The
maximal holomorphic distribution on M , D, is defined by D = Ker(η).

The best known examples of real hypersurfaces in CPm,m ≥ 2, are the homogeneous
ones which were classified by Takagi into six types, see [5–7]. All these types are Hopf
and Kimura, [8], proved that they are the unique Hopf real hypersurfaces that have constant
principal curvatures in CPm . Such real hypersurfaces are:

• Type (A1), geodesic hyperspheres of radius r , 0 < r < π
2 . They have 2 distinct constant

principal curvatures, 2 cot(2r) with eigenspace R[ξ ] and cot(r) with eigenspace D.
• Type (A2), tubes of radius r , 0 < r < π

2 , over totally geodesic complex projective spaces
CPn , 0 < n < m − 1. They have 3 distinct constant principal curvatures, 2 cot(2r) with
eigenspace R[ξ ], cot(r) and − tan(r). The corresponding eigenspaces of cot(r) and
− tan(r) are complementary and φ-invariant distributions in D.

• Type (B), tubes of radius r , 0 < r < π
4 , over the complex quadric Qm−1. They have 3

distinct constant principal curvatures, 2 cot(2r) with eigenspace R[ξ ], cot(r − π
4 ) and

− tan(r − π
4 ) whose corresponding eigenspaces are complementary and equal dimen-

sional distributions in D such that φVcot(r− π
4 ) = V− tan(r− π

4 ).

• Type (C), tubes of radius r , 0 < r < π
4 , over the Segre embedding ofCP1×CPn , where

2n+1 = m andm ≥ 5. They have 5 distinct constant principal curvatures, 2 cot(2r)with
eigenspaceR[ξ ], cot(r− π

4 )with multiplicity 2, cot(r− π
2 ) = − tan(r)with multiplicity

m−3, cot(r − 3π
4 ), with multiplicity 2 and cot(r −π) = cot(r) with multiplicitym−3.

Moreover φVcot(r− π
4 ) = Vcot(r− 3π

4 ) and V− tan(r) and Vcot(r) are φ-invariant.

• Type (D), tubes of radius r , 0 < r < π
4 , over the Plücker embedding of the complex

Grassmannian manifold G(2, 5) in CP9. They have the same principal curvatures as
type (C) real hypersurfaces, 2 cot(2r) with eigenspace R[ξ ], and the other 4 principal
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curvatures have the same multiplicity 4 and their eigenspaces have the same behaviour
with respect to φ as in type (C).

• Type (E), tubes of radius r , 0 < r < π
4 , over the canonical embedding of the Hermitian

symmetric space SO(10)/U (5) inCP15. They also have the same principal curvatures as
type (C) real hypersurfaces, 2 cot(2r)with eigenspaceR[ξ ], cot(r − π

4 ) and cot(r − 3π
4 )

have multiplicities equal to 6 and− tan(r) and cot(r) have multiplicities equal to 8. Their
corresponding eigenspaces have the same behaviour with respect to φ as in type (C).

We will call type (A) real hypersurfaces to both types (A1) or (A2).
The structure Jacobi operator Rξ on M is defined as Rξ X = R(X , ξ)ξ , where R is the

Riemannian curvature tensor on M . It is given by

Rξ X = X − η(X)ξ + g(Aξ, ξ)AX − g(Aξ, X)Aξ

for any X tangent to M .
In this paper we will consider the tensors R(k)

ξF
and R(k)

ξT
associated to Rξ . The first one is

related to the difference of the connections ∇̂(k)−∇. In fact, R(k)
ξF

(X , Y ) = ((∇̂(k)
X −∇X )Rξ )Y ,

for any X , Y tangent to M . In [9], first author proved non-existence of real hypersurfaces
in CPm , m ≥ 3, such that R(k)

ξF
identically vanishes. Now we generalize such a condition

classifying real hypersurfaces in CPm whose tensor R(k)
ξF

satisfies the cyclic condition

g(R(k)
ξF

(X , Y ), Z) + g(R(k)
ξF

(Y , Z), X) + g(R(k)
ξF

(Z , X), Y ) = 0 (1.1)

for any X , Y , Z tangent to M by the following

Theorem 1.1 Let M be a real hypersurface of CPm, m ≥ 3, and k a nonzero real number
such that kg(Aξ, ξ) �= 1. Then M satisfies (1.1) if and only if M is locally congruent to a
real hypersurface of type (A).

If L denotes the Lie derivative on M , for any nonzero real number k, from the k-th
generalized Tanaka–Webster connection we can define a differential operator of first order,
called the derivative of Lie type L(k), by

L(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X = LXY + T (k)

X Y (1.2)

for any X , Y tangent to M . Then R(k)
ξT

(X , Y ) = ((L(k)
X − LX )Rξ )Y , for any X , Y tangent to

M . In [10], the non-existence of real hypersurfaces in CPm , m ≥ 3, such that R(k)
ξT

vanishes
identically is also proved (see also [11]). We will generalize such a result studying real
hypersurfaces M in CPm whose tensor R(k)

ξT
satisfies the cyclic condition

g(R(k)
ξT

(X , Y ), Z) + g(R(k)
ξT

(Y , Z), X) + g(R(k)
ξT

(Z , X), Y ) = 0 (1.3)

for any X , Y , Z tangent to M .

Theorem 1.2 Let M be a real hypersurface in CPm, m ≥ 3, and k a nonzero real number
such that kg(Aξ, ξ) �= 1. Then R(k)

ξT
satifies (1.3) if and only if either

1. k < 0 and M is locally congruent to a geodesic hypersphere of radius r , 0 < r < π
2 ,

with cot(r) = −k, or

2. k = − (1+λ2)(2+αλ)λ+α
λ(λ−α)

, with α = 2 cot(2r), λ = cot(r − π
4 ), and M is locally congruent

to a real hypersurface of type (B) and radius 0 < r < π
4 .
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2 Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of classC∞ unless
otherwise stated. Let M be a connected real hypersurface inCPm,m ≥ 2, without boundary.
Let N be a locally defined unit normal vector field on M . Let∇ be the Levi-Civita connection
on M and (J , g) the Kählerian structure of CPm .

For any vector field X tangent to M we write J X = φX + η(X)N , and −J N = ξ . Then
(φ, ξ, η, g) is an almost contact metric structure on M (see [12]). That is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX , φY ) = g(X , Y ) − η(X)η(Y ) (2.1)

for any tangent vectors X , Y to M . From (2.1) we obtain

φξ = 0, η(X) = g(X , ξ). (2.2)

From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − g(AX , Y )ξ and ∇X ξ = φAX (2.3)

for any X , Y tangent to M , where A denotes the shape operator of the immersion. As the
ambient space has holomorphic sectional curvature 4, the equations of Gauss and Codazzi
are given, respectively, by

R(X , Y )Z = g(Y , Z)X − g(X , Z)Y + g(φY , Z)φX − g(φX , Z)φY

−2g(φX , Y )φZ + g(AY , Z)AX − g(AX , Z)AY , (2.4)

and

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX , Y )ξ (2.5)

for any tangent vectors X , Y , Z to M , where R is the curvature tensor of M .
In the sequel we need the following results.

Theorem 2.1 (Maeda [13]) Let M be a Hopf real hypersurface in CPm, m ≥ 2. Then
α = g(Aξ, ξ) is constant and if W is a vector field which belongs toD such that AW = λW,
then 2λ − α �= 0 and AφW = μφW, where μ = αλ+2

2λ−α
.

Theorem 2.2 ([14]) Let M be a real hypersurface in CPm, m ≥ 2. Then the following facts
are equivalent:

1. φA = Aφ.
2. M is locally congruent to a real hypersurface of type (A).

The following non-existence Theorems will also be applied.

Theorem 2.3 ([15]) There does not exist any real hypersurface M in CPm, m ≥ 3, whose
shape operator satisfies Aξ = αξ +U, AU = ξ , AφU = − 1

α
φU, where U is a unit vector

field in D and α a nonzero function defined on M.

Theorem 2.4 ([15]) There does not exist any real hypersurface M in CPm, m ≥ 3, whose

shape operator is given by Aξ = αξ + βU, AU = βξ + β2−1
α

U, AφU = − 1
α
φU, the

eigenvalues of A in DU = Span{ξ,U , φU }⊥ are different from 0, − 1
α
and β2−1

α
and if

Z ∈ DU satisfies AZ = λZ, then AφZ = λφZ, where U and α are as in Theorem 2.3 and
β is a nonzero function defined on M.
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Theorem 2.5 There does not exist any real hypersurface M in CPm, m ≥ 3, whose shape
operator is given by Aξ = ξ +βU, AU = βξ + (β2 − 1)U, AφU = −φU, and there exists
Z ∈ DU such that AZ = −Z, AφZ = −φZ, where U, DU and β are as in Theorem 2.4.

3 Proof of Theorem 1.1

Let M be a real hypersurface in CPm satisfying (1.1). This yields

g(φAX , RξY )η(Z) − kη(X)g(φRξY , Z) + η(Y )g(RξφAX , Z) + kη(X)g(RξφY , Z)

+g(φAY , Rξ Z)η(X) − kη(Y )g(φRξ Z , X) + η(Z)g(RξφAY , X) + kη(Y )g(RξφZ , X)

+g(φAZ , Rξ X)η(Y ) − kη(Z)g(φRξ X ,Y ) + η(X)g(RξφAZ ,Y )

+kη(Z)g(RξφX ,Y ) = 0 (3.1)

for any X , Y , Z tangent to M .
Suppose that M is Hopf, that is, Aξ = αξ , and take X = ξ , Y , Z ∈ D in (3.1). We obtain

−kg(φRξY , Z) + kg(Rξ φY , Z) + g(Rξ φAY , Z) − g(AφRξY , Z) = 0

for any Y , Z ∈ D. Thus for any Y ∈ Dwe have−kφRξY +kRξ φY +Rξ φAY −AφRξY = 0.
If Y ∈ D satisfies AY = λY , from Theorem 2.1 we have AφY = μφY , RξY = (1 + αλ)Y
and Rξ φY = (1+ αμ)φY , where μ = αλ+2

2λ−α
. Therefore, we get −k(1+ αλ) + k(1+ αμ) +

λ(1 + αμ) − μ(1 + αλ) = 0, that is, (λ − μ)(1 − kα) = 0. As we suppose kα �= 1, we
arrive to λ = μ. This yields φA = Aφ and by Theorem 2.2 M is locally congruent to a real
hypersurface of type (A).

Nowwe suppose thatM is non-Hopf andwewrite Aξ = αξ+βU , whereU is a unit vector
field in D and α and β are functions on M , and β does not vanish at least on a neighborhood
of a point p ∈ M . We will make the calculations on such a neighborhood.

Take X = Y = ξ , Z ∈ D in (3.1). It follows g(Rξ φAξ, Z) = 0, that is, βg(Rξ φU , Z) =
0, for any Z ∈ D. As β �= 0 this yields Rξ φU = 0. Therefore, α �= 0 and

AφU = − 1
α
φU . (3.2)

Putting X = ξ , Y , Z ∈ D in (3.1) we obtain

−kg(φRξY , Z) + kg(Rξ φY , Z) + g(Rξ φAY , Z) − g(AφRξY , Z) = 0 (3.3)

for any Y , Z ∈ D. Then −kφRξY + kRξ φY + Rξ φAY − AφRξY = −g(AφRξY , ξ)ξ =
βg(RξY , φU )ξ = 0, for any Y ∈ D. If we take Y = φU we get −kφRξ φU − kRξU +
Rξ φAφU − AφRξ φU = 0, and this yields ( 1

α
− k)RξU = 0. As we suppose kα �= 1, we

obtain RξU = 0. That is,

AU = βξ + β2−1
α

U . (3.4)

From (3.2) and (3.4)we have that Span{ξ,U , φU } is A-invariant. Therefore, its orthogonal
complementary DU = {X ∈ D | g(X ,U ) = g(X , φU ) = 0} is also A-invariant. Take Y ∈
DU such that AY = λY . Then from (3.3) we obtain−kφRξY +(k+λ)Rξ φY − AφRξY = 0.
As RξY = (1+αλ)Y and Rξ φY = φY +αAφY it yields−kαλφY +λφY +α(k+λ)AφY −
(1+αλ)AφY = 0, that is, λ(1−αk)φY +(αk−1)AφY = 0. As αk �= 1we get AφY = λφY
and then the eigenspaces in DU are φ-invariant.

Take now Y ∈ DU such that AY = λY , AφY = λφY . The Codazzi equation (∇Y A)φY −
(∇φY A)Y = −2ξ implies ∇Y (λφY ) − A∇YφY − ∇φY (λY ) + A∇φY Y = −2ξ , that is,
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Y (λ)φY+λ∇YφY−A∇YφY−(φY )(λ)Y−λ∇φY Y+A∇φY Y = −2ξ . Its scalar productwith
ξ gives−λg(φY , φAY )−g(∇YφY , αξ +βU )+λg(Y , φAφY )+g(∇φY Y , αξ +βU ) = −2.
Thus

βg([φY , Y ],U ) = 2λ2 − 2αλ − 2 (3.5)

and its scalar product with U implies λg(∇YφY ,U ) − g(∇YφY , βξ + β2−1
α

U ) −
λg(∇φY Y ,U )+g(∇φY Y , βξ+ β2−1

α
U ) = 0.Then (

β2−1
α

−λ)g([φY , Y ],U )+βg(φY , φAY )

− βg(Y , φAφY ) = 0 and
(

β2−1
α

− λ
)
g([φY , Y ],U ) = −2λβ. (3.6)

If we suppose that λ = β2−1
α

, from (3.6) we have 2λβ = 0, and as β �= 0, this yields λ = 0
and β2 = 1. Maybe after changing ξ by−ξ we can suppose β = 1. Therefore Aξ = αξ +U ,
AU = βξ and by Theorem 2.3 this kind of real hypersurfaces does not exist. Thus we have

proved that λ �= β2−1
α

.
If λ = 0, (3.5) and (3.6) become, respectively, βg([φY , Y ],

U ) = −2 and β2−1
α

g([φY , Y ],U ) = 0. As we suppose 0 = λ �= β2−1
α

, we arrive to a
contradiction.

Suppose then that λ = − 1
α
. Then (3.5) gives βg([φY , Y ],U ) = 2

α2 and (3.6) implies

g([φY , Y ],U ) = 2
β
. Thus β = βα2 yields α2 = 1. Maybe after changing ξ by −ξ we can

suppose α = 1, Aξ = ξ + βU , AU = βξ + (β2 − 1)U and AφU = −φU . Moreover,
there exists Z ∈ DU such that AZ = −Z and AφZ = −φZ . From Theorem 2.5 such real
hypersurfaces do not exist and the Theorem follows from Theorem 2.4.

4 Proof of Theorem 1.2

If M satisfies (1.3) we have

g(φAX , RξY )η(Z) − kη(X)g(φRξY , Z) − η(Z)g(φARξY , X) + η(X)g(φARξY , Z)

+η(Y )g(Rξ φAX , Z) + kη(X)g(Rξ φY , Z) − η(X)g(Rξ φAY , Z) − kη(Y )g(Rξ φX , Z)

+g(φAY , Rξ Z)η(X) − kη(Y )g(φRξ Z , X) − η(X)g(φARξ Z , Y ) + η(Y )g(φARξ Z , X)

+η(Z)g(Rξ φAY , X) + kη(Y )g(Rξ φZ , X) − η(Y )g(Rξ φAZ , X) − kη(Z)g(Rξ φY , X)

+g(φAZ , Rξ X)η(Y ) − kη(Z)g(φRξ X , Y ) − η(Y )g(φARξ X , Z) + η(Z)g(φARξ X , Y )

+η(X)g(Rξ φAZ , Y ) + kη(Z)g(Rξ φX , Y ) − η(Z)g(Rξ φAX , Y ) − kη(X)g(Rξ φZ , Y ) = 0

(4.1)

for any X , Y , Z tangent to M .
Let us suppose that M is Hopf, that is, Aξ = αξ . Take X = ξ , Y , Z ∈ D in (4.1). We

obtain−kg(φRξY , Z)+g(φARξY , Z)+kg(Rξ φY , Z)−g(Rξ φAY , Z)+g(φAY , Rξ Z)−
g(φARξ Z , Y )+g(Rξ φAZ , Y )−kg(Rξ φZ , Y ) = 0 for any Y , Z ∈ D. This yieldsφARξY+
kRξ φY + Rξ AφY − AφRξY = 0, for any Y ∈ D. Take Y ∈ D satisfying AY = λY . Then
AφY = μφY , RξY = (1 + αλ)Y and Rξ φY = (1 + αμ)φY . Last expression implies
(1 + αλ)φAY + k(1 + αμ)φY + μ(1 + αμ)φY − (1 + αλ)AφY = 0. Then

(1 + αλ)(λ − μ) + (1 + αμ)(k + μ) = 0. (4.2)
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As μ = αλ+2
2λ−α

, (4.2) becomes

2(1 + αλ)(2λ − α)(λ2 − αλ − 1) + (α2λ + 2λ + α)(2kλ − kα + αλ + 2) = 0. (4.3)

From (4.3) all the principal curvatures inD are constant and, atmost, there are four distinct.
Therefore M can be locally congruent to any real hypersurface in Takagi’s list.

If M is a geodesic hypersphere, λ = μ and from (4.2) either λ = −k or λ = − 1
α
. In the

first case cot(r) = −k, 0 < r < π
2 , and therefore k < 0. In the second case, as λ = μ,

− 1
α

= 1
− 2

α
−α

, that is, 1
α

= α
α2+2

, which implies 2 = 0, that is impossible.

If M is of type (A2), then either cot(r) = −k and − tan(r) = − 1
α
or cot(r) = − 1

α
and

− tan(r) = −k. In both cases−1 = k
α
, that is,α = −k.Asα = 2 cot(2r) = cot(r)−tan(r) =

−k, and in the first case we obtain −k = −k + 1
α
, which is impossible. Thus −k = − 1

α
+ k,

that is, −k = α = 1
2k , also impossible.

IfM is of type (B), the principal curvatures inD are λ = cot(r− π
4 ) andμ = − tan(r− π

4 ),
0 < r < π

4 . If in (4.2) we suppose μ = − 1
α
we get (1 + αλ)(λ − μ) = 0 and as λ �= μ, we

obtain λ = − 1
α
, a contradiction. Thus μ �= − 1

α
and k looks like item 2 of Theorem 1.2.

If M is either of type (C) or (D) or (E), we have that in D, λ1 = − tan(r) and λ2 =
cot(r) are two of the distinct principal curvatures and their corresponding eigenspaces are
φ-invariant. That means that μ1 = λ1 and μ2 = λ2. Then (4.2) for λ1 = tan(r) yields
(1 − α tan(r))(k − tan(r)) = 0. If α tan(r) = 1, as α = 2 cot(2r) = cot(r) − tan(r),
we should have 1 − tan2(r) = 1. This yields tan(r) = 0, which is impossible because
0 < r < π

4 . Therefore tan(r) = k.
For λ2 = cot(r), (4.2) implies (1 + α cot(r))(k + cot(r)) = 0. If 1 + α cot(r) = 0,

α cot(r) = −1. As above this gives cot2(r) − 1 = −1, that is, cot(r) = 0 for 0 < r < π
4 ,

which is impossible. Then k = − cot(r), that contradicts the fact of k = tan(r) and finishes
the proof in this case.

If M is non-Hopf, we write Aξ = αξ + βU , as in the proof of Theorem 1.1. If we take
X = Y = ξ , Z ∈ D in (4.1) we obtain g(φAξ, Rξ Z) = βg(Rξ φU , Z) = 0 for any Z ∈ D.
As we suppose β �= 0, we get Rξ φU = 0. This yields α �= 0 and

AφU = − 1
α
φU . (4.4)

Now, if we take X = ξ , Y , Z ∈ D in (4.1) we obtain g(φARξY , Z) + kg(Rξ φY , Z) −
g(φARξ Z , Y ) + g(Rξ φAZ , Y ) = 0 for any Y , Z ∈ D. This yields

−Rξ AφZ − kφRξ Z − φARξ Z + Rξ φAZ = 0 (4.5)

for any Z ∈ D. If we take Z = φU in (4.5) we have Rξ AU + Rξ φAφU = 0 and from (4.4)
we get

Rξ AU + 1
α
RξU = 0. (4.6)

But from the expression used to obtain (4.5) we also obtain

φARξY + kRξ φY + Rξ AφY − AφRξY = 0 (4.7)

for any Y ∈ D. If we take Y = φU in (4.7) we have

−kRξU − Rξ AU = 0. (4.8)

From (4.6) and (4.8) it follows ( 1
α
−k)RξU = 0.Aswe suppose kα �= 1we have RξU = 0

and this yields

AU = βξ + β2−1
α

U . (4.9)

123



J. de Dios Pérez, D. Pérez-López

Thus, as in the proof of Theorem 1.1, DU is A-invariant. Take a unit Y ∈ DU such that
AY = λY . If we introduce such a Y in (4.7) and take Z = Y in (4.5) we obtain

k(Rξ φY − φRξY ) + Rξ φAY − AφRξY = 0. (4.10)

Now RξY = (1+αλ)Y and Rξ φY = φY +αAφY . From (4.10) we have k(φY +αAφY −
(1+αλ)φY )+λRξ φY −(1+αλ)AφY = 0, which yields λ(1−kα)φY +(kα−1)AφY = 0.
As we suppose kα �= 1, we obtain AφY = λφY and any eigenspace in DU is φ-invariant.

From (4.5) if Z ∈ DU satisfies AZ = λZ , AφZ = λφZ , we get φARξ Z = −kφRξ Z ,
that is, (1 + αλ)φAZ = −k(1 + αλ)φZ . Therefore, either λ = − 1

α
or λ = −k.

Let us suppose that − 1
α
is a principal curvature in DU and take Y ∈ DU such that

AY = − 1
α
Y , AφY = − 1

α
φY . The Codazzi equation (∇Y A)φY − (∇φY A)Y = −2ξ yields

−Y ( 1
α
)φY − 1

α
∇YφY −A∇YφY +(φY )( 1

α
)Y + 1

α
∇φY Y +A∇φY Y = −2ξ . Its scalar product

with ξ gives 1
α
g(φY , φAY )−g(∇YφY , αξ +βU )− 1

α
g(Y , φAφY )−g(∇φY Y , αξ +βU ) =

−2. That is, − 2
α2 − 2 + βg([φY , Y ],U ) = −2. Therefore

g([φY , Y ],U ) = 2
α2β

. (4.11)

Its scalar product with U yields − 1
α
g(∇YφY ,U ) − g(∇YφY , βξ + β2−1

α
U )

+ 1
α
g(∇φY Y ,U ) + g(∇φY Y , βξ + β2−1

α
U ) = 0. That is, β2

α
g([φY , Y ],U ) = 2β

α
. Thus

g([φY , Y ],U ) = 2
β
. (4.12)

From (4.11) and (4.12) we have α2 = 1. Maybe after changing ξ by −ξ we can suppose
α = 1. From Theorem 2.5 these real hypersurfaces do not exist.

Thus the unique principal curvature in DU is −k and −k �= 0, −k �= − 1
α
. Let us suppose

−k = β2−1
α

. Take a unit Y ∈ DU such that AY = −kY , AφY = −kφY . From the equation
of Codazzi and the same calculations as in the proof of Theorem 1.1 we obtain

βg([φY , Y ],U ) = 2k2 − 2 + 2kα (4.13)

and
(

β2−1
α

+ k
)
g([φY , Y ],U ) = 2kβ. (4.14)

As β2−1
α

+ k = 0, (4.14) yields 2kβ = 0, which is impossible. The result follows as in
the proof of Theorem 1.1.
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