Mostrar el registro sencillo del ítem

dc.contributor.authorCabezón, L.
dc.contributor.authorBaca Ruiz, Luis Gonzaga 
dc.contributor.authorCriado Ramón, David
dc.contributor.authorJadraque Gago, Eulalia 
dc.contributor.authorPegalajar Jiménez, María Del Carmen 
dc.date.accessioned2022-12-13T07:44:05Z
dc.date.available2022-12-13T07:44:05Z
dc.date.issued2022-11-20
dc.identifier.citationCabezón, L... [et al.]. Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study. Energies 2022, 15, 8732. [https://doi.org/10.3390/en15228732]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78405
dc.description.abstractPhotovoltaic solar energy is booming due to the continuous improvement in photovoltaic panel efficiency along with a downward trend in production costs. In addition, the European Union is committed to easing the implementation of renewable energy in many companies in order to obtain funding to install their own panels. Nonetheless, the nature of solar energy is intermittent and uncontrollable. This leads us to an uncertain scenario which may cause instability in photovoltaic systems. This research addresses this problem by implementing intelligent models to predict the production of solar energy. Real data from a solar farm in Scotland was utilized in this study. Finally, the models were able to accurately predict the energy to be produced in the next hour using historical information as predictor variables.es_ES
dc.description.sponsorshipMinistry of Science and Innovation, Spain (MICINN) Spanish Government PID2020-112495RB-C21es_ES
dc.description.sponsorshipI + D + i FEDER B-TIC-42-UGR20es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPhotovoltaic energyes_ES
dc.subjectMachine learninges_ES
dc.subjectEnergy forecastinges_ES
dc.subjectSolar farmes_ES
dc.titlePhotovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Studyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/en15228732
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional